This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Abbreviations
cao correct answer only
cso correct solution only
dep dependent
ft follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
www without wrong working

SECTION A

<table>
<thead>
<tr>
<th>Qu</th>
<th>Answers</th>
<th>Mark</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)</td>
<td>37.35 and A</td>
<td>2</td>
<td>M1 for $315 \times 0.05 + 720 \times 0.03$</td>
</tr>
<tr>
<td>(b) (i)</td>
<td>0.05</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>Large and 0.0485 seen oe</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
| (c) | 890 | 3 | M1 for $\frac{1134.75}{0.85}$
M1 for their $1335 - (375 + 70)$ |
| 2(a) | $(7, 9)$ | 1 | |
| (b) (i) | $y = 2x - 5$ | 2 | M1 for gradient $\frac{15 + 21}{10 + 8}$ ($= 2$) |
| (ii) | Yes and $-9 = 2 \times -2 - 5$ | 1 | ft correct conclusion from their equation with the working shown |
| (c) (i) | $(-5, 0)$ | 1 | |
| (b) | $\left(\frac{4p - 15}{3}, p\right)$ | 2 | M1 for line through $(4, 9)$ and $(6, 6)$ |
| (ii) | $(5, 7 \frac{1}{2})$ | 2 | B1 for either x or y coordinate |
| 3(a) | $10.6 - 10.62$ | 2 | M1 for $\tan 37 = \frac{8}{QR}$ |
| (ii) | 192 | 2 | M1 for $4\times$ seen |
| (b) | 6.40 | 2 | M1 for $\frac{46.62}{0.45}$ |
| (c) | 18 | 2 | M1 for $(k =) 90$ oe or $\frac{3}{5} \times 30$ |
4. (a) $4x + 5y + 4x + 5y = 1020$ leading to $4x + 5y = 510$

 $6x + 3y + 6x + 3y + 4x + y + 4x + y = 1360$
 leading to $5x + 2y = 340$

 (b) $x = 40, \ y = 70$

 (c) 0.56

5. (a) (i) $\begin{pmatrix} -10 & -4 \\ 15 & 7 \end{pmatrix}$

 (ii) $\begin{pmatrix} -0.5 & -1 \\ 1.5 & 2 \end{pmatrix}$

 (b) (i) 13

 (ii) $\begin{pmatrix} 8 \\ 6 \end{pmatrix}$

 (c) (i) $\begin{pmatrix} -5 \\ 2 \end{pmatrix}$

 (ii) $(18, 9)$

 (iii) 22

6. (a) (i) Translation cao $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$

 (b) Enlargement cao Scale factor 3, Centre $(6, 4)$

 (ii) (a) $(-1, -2)$

 (b) $(-1, 0)$

 (b) (i) Kite

 (ii) $(1, 3)$ $(4, 2)$

© University of Cambridge International Examinations 2011
SECTION B

7 (a) 30.4 to 30.45

- 4 M1 for $16^2 + 20^2 \pm (2) \times 16 \times 20 \cos 115^\circ$
- M1 for $\sqrt{656 - 640 \cos 115}$
- A1 for 926.47(…)

(b) $16 \cos 25^\circ$ oe

- 2 M1 for $\cos 25 = \frac{x}{16}$

(c) (i) 28 www

- 2 M1 for $\frac{1}{2} (20 + AD) \times 14.5 = 348$

(ii) $\frac{1}{2} \times 28 \times 14.5 (= 203)$

- 1 $\frac{1}{2} \times 30.4 \times 28 \sin 28.5$

(iii) 28.4 to 28.5

- 3 ft M1 for $\frac{1}{2} \times 30.4 \times 28 \times \sin CAD = 203$
- M1 for $\sin CAD = \frac{203}{\sqrt{28} \times 30.4 \times 28}$

ft their AC and their AD

8 (a) (i) $y^2 + 18y + 81 = y^2 + y^2 + 10y + 25$

- 2 M1 for $(y + 9)^2 = y^2 + (y + 5)^2$ oe

$y^2 - 8y - 56 = 0$

(ii) 12.5, −4.5

- 3 M1 for $y = \frac{8 \pm \sqrt{8^2 + 4 \times 56}}{2}$ soi

A1 for one solution or 12.48(5)… and −4.48(5)…

(iii) 21.5

- 1 ft 9 + their positive y

(b) (i) (a) $\hat{O}QS = 90 - x$

- 1 and conclusion

(b) $\frac{1}{2} (90 + x)$ oe cao

- 2 M1 for $\frac{1}{2} (180 - (90 - x))$

(ii) (a) $3 \times \frac{1}{2} (90 - x)$

- 2 M1 for $3 \times \frac{1}{2} (90 - x) = 2 \times$ their OQS

$= 2 \times \frac{1}{2} (90 + x)$

leading to $180 + 2x$

$= 270 - 3x$

(b) 18

- 1

9 (a) (i) Histogram with

- 3 B2 for 4 correct columns or
- B1 for at least 1 correct column

heights 0.14, 0.56 ,0.74, 0.42 and 0.2

widths 100, 50, 50, 50, 100

(ii) 14 − 16

- 1

(iii) 200 $m < 250$

- 1

(iv) $\frac{7}{20}$ cao

- 1
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| (b) \((p =) 35\) | 3 | M1 for \(\frac{125 \times 14 + 175p + 225 \times 26}{40 + p} = 183\)
M1 \(183p - 175p = 1750 + 5850 - 7320\)
| (c) (i) 1 | 1 | |
| (ii) \(\frac{49k}{750k}\) | 2 ft | M1 for \(\frac{7}{20} \times \frac{14}{75}\)
ft their \(\frac{7}{20}\) and their 75 |

<table>
<thead>
<tr>
<th>10</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 32</td>
<td>2</td>
<td>M1 for (\frac{200}{6.2})</td>
<td></td>
</tr>
</tbody>
</table>
| (b) (i) 1.13 | 3 | B2 for figs 1128…….(or 113) or
M1 for \(0.2 = \pi r^2\) fig 5 |
| (ii) (a) 56.5 to 56.51 | 3 | M1 for \(\pi \times 1.97 \times 5\)
M1 for their volume – 0.2 |
| (b) 53 | 2 ft | M1 for \(\frac{3000}{56.5}\)
ft their 56.5 with rounding down to an integer |
| (c) 12.9 | 2 | M1 for \(2 \times \pi \times 1.9 (= 11.9)\) |

<table>
<thead>
<tr>
<th>11</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (i) 35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) 360</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) 7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) (i) 10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (ii) (8.00, 0) to (8.15, 10) \(8.15, 10\) to (8.23, 22) \(8.23, 22\) to (8.47, 30) | 2 ft | B1 for 2 correct lines
ft their 10 and their 10 + 12 |
| (iii) 20 | 2 ft | M1 for \(\frac{8}{24}(\times 60)\)
ft \(18 - \text{their 10}\) \(24/(60)\) |
| (c) (i) 12.29 cao | 2 | M1 for \(\sin 55 = \frac{MK}{15}\) oe |
| (ii) 247° | 1 | |
| (iii) 10.2 to 10.7 | 1 | |