A1 The diagram shows the structures of various compounds.

(a) Use the letters A to F to answer the following. Each compound may be used once, more than once or not at all.

(i) Which **one** of these compounds is most likely to contribute to acid rain?

... [1]

(ii) Which **one** of these compounds is an amphoteric oxide?

... [1]

(iii) Which **two** of these compounds have giant structures?

... and ... [1]

(iv) Which **one** of these compounds when molten, releases a reddish brown gas at the anode on electrolysis?

... [1]
(b) What is the empirical formula of compound F?

...[1]

(c) Carbon monoxide is a poisonous atmospheric pollutant. State how this gas gets into the air.

...[1]

A2 The table shows the decomposition temperatures of some metal carbonates.

<table>
<thead>
<tr>
<th>metal carbonate</th>
<th>decomposition temperature / °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>magnesium carbonate</td>
<td>540</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>900</td>
</tr>
<tr>
<td>strontium carbonate</td>
<td>1280</td>
</tr>
<tr>
<td>barium carbonate</td>
<td>1360</td>
</tr>
</tbody>
</table>

(a) (i) Describe how the decomposition temperature depends on the position of the metal in the reactivity series.

...[1]

(ii) Write an equation for the thermal decomposition of magnesium carbonate.

...[1]

(b) Petroleum fractions need to be cracked.

(i) Why do oil companies need to crack petroleum fractions?

...[1]

(ii) State the conditions needed for cracking.

...[2]

(iii) Complete the following equation for the cracking of tetradecane.

\[C_{14}H_{30} \rightarrow C_{10}H_{22} + \text{...............} \]

[1]
A student investigated the reaction of calcium carbonate with hydrochloric acid.

$$\text{CaCO}_3 + 2\text{HCl} \rightarrow \text{CaCl}_2 + \text{CO}_2 + \text{H}_2\text{O}$$

The student used large pieces of calcium carbonate and carried out the reaction at 20°C. The concentration of hydrochloric acid was 1.0 mol/dm³.

The results of the experiment were plotted as a graph which is shown below.

(a) After how many seconds did the reaction stop?

..[1]

(b) Calculate the number of moles of carbon dioxide released during the reaction.
[The volume of one mole of any gas at r.t.p. is 24 dm³]
(c) The student repeated the experiment using the same mass of calcium carbonate and the same concentration of acid at 20 °C.

This time the student used small pieces of calcium carbonate. On the grid opposite, sketch the graph for the reaction of small pieces of calcium carbonate with hydrochloric acid.

(d) When the student repeated the experiment using hydrochloric acid of concentration 2.0 mol/dm³, the speed of reaction increased.

Use the kinetic particle theory to explain why the speed of this reaction increased.

..
..
..
...[2]
A4 Helium, neon, argon, krypton and xenon are noble gases.

(a) State a use for argon.

.. [1]

(b) Use ideas about electronic structure to explain why the noble gases are unreactive.

.. [1]

(c) Complete the table to show the number of particles in two isotopes of argon.

<table>
<thead>
<tr>
<th>isotope</th>
<th>number of protons</th>
<th>number of electrons</th>
<th>number of neutrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{36}_{18}$Ar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^{40}_{18}$Ar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[2]

(d) Explain why potassium comes after argon in the Periodic Table even though it has a relative atomic mass which is lower than that of argon.

.. [1]

(e) Compounds of xenon with fluorine were first made in the 1960s. Xenon reacts with fluorine at 400 °C to form xenon tetrafluoride, XeF_4.

Write a symbol equation for this reaction.

[1]
Balloons filled with helium, neon, argon and krypton were tied to a bar. They were held horizontally at the same height and then released. The position of three of the balloons 5 seconds after release is shown in the diagram.

Predict the position of the balloon filled with krypton.

..
..

[1]
A5 The diagram shows the stages in water purification.

(a) After the air is blown in, the impure water contains iron(III) ions.

(i) What is the approximate percentage of oxygen in the air?
...

(ii) Describe a test for iron(III) ions.

test...

result..

(b) Aluminium sulphate is added to clump tiny particles of clay together to form larger particles of solid.

(i) Suggest how the solids are separated from the water.
...

(ii) Aluminium sulphate contains Al\(^{3+}\) ions and SO\(_4\)^{2-} ions. Deduce the formula of aluminium sulphate.
...
Question 9

(c) Why are the following added during the water purification process?

(i) carbon ..[1]

(ii) chlorine ..[1]

(d) Calcium hydroxide is added to neutralise the acidic solution formed after chlorine has been added. This solution contains hydrochloric acid.

(i) Write an equation for the reaction of calcium hydroxide with hydrochloric acid.
..[1]

(ii) Write the ionic equation for this reaction.
..[1]
A6 Methane, CH₄, is the major constituent of natural gas.

(a) Draw a dot-and cross-diagram to show how the outer shell electrons are arranged in methane.

- show hydrogen electrons as •
- show carbon electrons as x

(b) At a temperature of –5 °C and a pressure of 26 atmospheres, methane combines with water and forms an ice-like structure called methane hydrate. Large quantities of methane hydrate have been found underground.

(i) Describe the arrangement and motion of the particles in solid methane hydrate.

..
..
..
..
.. [2]

(ii) The methane hydrate underground has not yet been extracted in large amounts. When it is extracted, large volumes of methane are released.

Suggest two reasons why methane hydrate decomposes when it is extracted.

..
..
..
..
.. [2]

(iii) Describe how the presence of methane in the atmosphere may affect the environment.

..
..
.. [1]
(c) A very small quantity of methane is present in the atmosphere.

State another source of this gas.

..[1]

(d) State a use of methane.

..[1]

(e) In the presence of light methane reacts with chlorine.

\[\text{CH}_4 + \text{Cl}_2 \rightarrow \text{CH}_3\text{Cl} + \text{HCl} \quad \Delta H = -99.5 \text{ kJ} \]

Draw an energy profile diagram for this reaction.

Show:
- the reactants and products,
- the activation energy,
- the enthalpy change.
B7 A simplified diagram of the nitrogen cycle is shown below.

(a) Although certain bacteria in the soil convert nitrogen gas into nitrates, other bacteria convert nitrogen into ammonium salts. The ionic equation for this second reaction is

\[\text{N}_2 + 8\text{H}^+ + 6\text{e}^- \rightarrow 2\text{NH}_4^+ \]

Explain why this is a reduction reaction. \[1\]

(b) In the presence of hydrogen ions, a different type of bacterium converts nitrate ions into nitrogen gas and water. Give the ionic equation for this reaction. \[1\]

(c) Ammonia is synthesized by the Haber process.

\[\text{N}_2 + 3\text{H}_2 \rightleftharpoons 2\text{NH}_3 \]

(i) State the sources of both the nitrogen and hydrogen needed for the Haber process. \[2\]

(ii) State the essential conditions for the Haber process. \[2\]
(d) Fertilisers are added to the soil to improve crop yields.
A farmer has the choice of two fertilisers, ammonium nitrate, NH_4NO_3, or diammonium hydrogen phosphate, $(\text{NH}_4)_2\text{HPO}_4$.

Show by calculation which of these fertilisers contains the greater percentage of nitrogen by mass.
You must show your working.

(e) State one major problem caused when the nitrates from fertilisers leach from the soil into streams and rivers.
The diagram shows the stages in the manufacture of sulphuric acid.

(a) In the furnace, an ore containing zinc sulphide, ZnS, is heated in oxygen to make zinc oxide, ZnO, and sulphur dioxide.

Write an equation for this reaction. [1]

(b) In the converter, sulphur dioxide and oxygen are passed over a series of catalyst beds at a temperature of about 420 °C.

\[2\text{SO}_2(\text{g}) + \text{O}_2(\text{g}) \rightleftharpoons 2\text{SO}_3(\text{g}) \quad \Delta H = -196 \text{kJ} \]

(i) An increase in pressure increases the yield of sulphur trioxide. Explain the reason for this effect. [1]

(ii) Even though an increase in pressure increases the yield of sulphur trioxide, the reaction in the converter is carried out at atmospheric pressure. Suggest a reason for this. [1]

(iii) In some sulphuric acid plants, the gases are cooled when they pass from one catalyst bed to the next. Use the equation to explain why the gases need to be cooled. [2]

(c) When sulphuric acid is reacted with excess iron powder, iron(II) sulphate and hydrogen are produced.

Suggest how crystals of iron(II) sulphate could be prepared from this reaction mixture. [2]

(d) 12.0 cm³ of an aqueous solution of sulphuric acid exactly neutralised 20.0 cm³ of a solution of sodium hydroxide of concentration 0.150 mol/dm³.

\[\text{H}_2\text{SO}_4 + 2\text{NaOH} \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O} \]

Calculate the concentration, in mol/dm³ of the aqueous sulphuric acid. [3]
Both ethanoic acid and butanoic acid are found in some plants and bacteria.

(a) Draw the structure of butanoic acid showing all atoms and bonds. [1]

(b) Explain:

(i) what is meant by a weak acid, [1]

(ii) how you could show that butanoic acid is a weak acid. [2]

(c) Butanoic acid can be converted into an ester by heating it with an alcohol and a few drops of concentrated sulphuric acid.

A sample of an ester contains 0.18 g of carbon, 0.03 g of hydrogen and 0.08 g of oxygen. The relative molecular mass of the ester is 116. Calculate both the empirical and molecular formulae of this ester. [3]

(d) Ethanoic acid can be produced by the bacterial fermentation of glucose, \(C_6H_{12}O_6 \). During this process glucose is first oxidised to ethanol.

(i) Write an equation for the fermentation of glucose to form ethanol and carbon dioxide. [1]

(ii) State the reagents and conditions required for ethanol to be oxidised to ethanoic acid in the laboratory. [2]
B10 The diagram shows a cell for purifying copper.

(a) Describe what you would observe during this electrolysis and write the equations for the reactions at the electrodes. [3]

(b) The electrodes and the electrolyte conduct electricity.

 (i) Explain how the structure of metals allows copper electrodes to conduct electricity. [1]

 (ii) Explain why solid copper(II) sulphate does not conduct electricity but an aqueous solution of copper(II) sulphate does conduct. [2]

(c) Describe how the apparatus shown in the diagram could be modified in order to electroplate an iron object, such as a knife, with nickel. [2]

(d) Bronze is an alloy of copper and tin. Bronze is less malleable than pure copper. Use ideas about the structure of metals and alloys to explain why bronze is less malleable than pure copper. [2]
The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).