Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 Choose from the following elements to answer the questions below.

- aluminium
- argon
- iron
- nickel
- nitrogen
- phosphorus
- sodium

Each element can be used once, more than once or not at all.

Name an element which

(a) is used as a catalyst in the hydrogenation of alkenes,

... [1]

(b) is manufactured by electrolysis,

... [1]

(c) reacts with oxygen to give an acidic oxide,

... [1]

(d) forms an ion that carries a negative charge,

... [1]

(e) reacts with chlorine to form a solid that dissolves in water to give a coloured solution.

... [1]
A2 The diagram shows the nuclei of five different atoms.

Key
- ○ neutron
- ● proton

(a) Which atom has an atomic number of 3?

... [1]

(b) Which atom has a mass number of 6?

... [1]

(c) Which **two** atoms are isotopes of the same element?

... and ... [1]

(d) Complete the table below to show the number of sub-atomic particles in both an atom and an ion of potassium.

<table>
<thead>
<tr>
<th></th>
<th>Potassium Atom $^{39}_{19}$K</th>
<th>Potassium Ion $^{39}_{19}$K$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Protons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Electrons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Neutrons</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[2]
A3 The structures shown below are of the first two members of an homologous series known as the cyclopropanes.

![Structure of compound D and E]

Members of an homologous series have a general formula.

(a) (i) State one other characteristic of an homologous series.

.. [1]

(ii) Deduce the general formula for the cyclopropane homologous series.

.. [1]

(b) Cyclopropanes react in a similar way to alkanes such as methane.

(i) Write a chemical equation for the complete combustion of compound D.

.. [2]

(ii) Suggest the type of reaction by which compound D reacts with chlorine.

.. [1]

(c) Name and draw the structure of an alkene that is an isomer of compound D.

name ..

structure
This question is about calcium compounds.

(a) Write the equation for the thermal decomposition of calcium carbonate. One of the products of this reaction is calcium oxide.

... [1]

(b) When water is added to calcium oxide, calcium hydroxide is formed.

(i) Write the equation for the reaction between water and calcium oxide.

... [1]

(ii) Solid calcium hydroxide reacts slowly with carbon dioxide. Name the calcium containing product of this reaction.

... [1]

(c) State one large scale use of calcium hydroxide.

... [1]

(d) Cement is made by heating calcium carbonate and clay together at a very high temperature.

One of the compounds produced is a form of calcium silicate, Ca$_3$SiO$_5$.

In the presence of water a chemical reaction takes place that helps in the setting of cement.

\[2\text{Ca}_3\text{SiO}_5 + 6\text{H}_2\text{O} \rightarrow \text{Ca}_3\text{Si}_2\text{O}_7 \cdot 3\text{H}_2\text{O} + 3\text{Ca(OH)}_2 \]

Calculate the mass of calcium hydroxide formed from 912 g of Ca$_3$SiO$_5$.

..
..
..
..
... [3]
A5 The structures of diamond, graphite and silicon carbide are shown below.

(a) Suggest the formula for silicon carbide.

... [1]
(b) Explain why graphite conducts electricity but silicon carbide does not.

..
..
..
... [2]

(c) Silicon carbide has a very high melting point.

(i) Explain why silicon carbide has a very high melting point.

..
..
..
... [1]

(ii) Suggest why the melting point of diamond is higher than that of silicon carbide.

..
..
..
... [1]

(d) When a 1.20 g sample of graphite is completely burnt in oxygen, 4.40 g of carbon dioxide are produced. What mass of carbon dioxide is made when a 1.20 g sample of diamond is completely burnt in oxygen?

mass of carbon dioxide …………………… g [1]
A6 Lithium is in Group I of the Periodic Table.

Lithium reacts with water to form lithium hydroxide and hydrogen.

(a) Describe what you would observe when a small piece of lithium is dropped onto the surface of cold water.

..
... [2]

(b) Write the equation for the reaction between lithium and water.

... [1]

(c) When lithium reacts with water, lithium ions, Li\(^+\), are formed.

\[\text{Li} \rightarrow \text{Li}^+ + \text{e}^- \]

Explain why the formation of a lithium ion from a lithium atom is an example of oxidation.

..
... [1]

(d) Rubidium, Rb, is another element in Group I.

Predict what you would observe when a small piece of rubidium is dropped onto cold water.

..
... [2]
A7 Graph 1 shows how the average temperature at the Earth’s surface may have changed over the last 150 thousand years.

Graph 2 shows how the percentage of carbon dioxide in the atmosphere may have changed over the last 150 thousand years.

(a) Carbon dioxide is a greenhouse gas. Scientists think that an increase in the greenhouse gases will result in global warming.

(i) Explain how graphs 1 and 2 support this statement.

...
.. [1]
(ii) Describe two consequences of global warming.

...
...
...
... [2]

(b) Draw a ‘dot and cross’ diagram for carbon dioxide. Show the outer shell electrons only.

(c) Chlorofluorocarbons, CFCs, are also greenhouse gases.

(i) Name one other greenhouse gas found in the atmosphere.
.. [1]

(ii) State the origin of this greenhouse gas, named in part (i).
... [1]

(iii) Describe how the presence of CFCs in the upper atmosphere increases the amount of ultra-violet light reaching the Earth’s surface.
... [2]
Section B

Answer three questions from this section.

The total mark for this section is 30.

B8 River water contains many substances including minerals, dissolved oxygen, organic material, nitrates and phosphates.

(a) Give one source of phosphates in water. [1]

(b) Excess dissolved phosphates in river water cause eutrophication. Describe the process of eutrophication. [3]

(c) (i) Describe a chemical test to show the presence of the nitrate ion. [2]

(ii) Suggest why it might be difficult to test for the presence of the nitrate ion in a sample of river water. [1]

(d) The concentration of dissolved oxygen in river water can be determined by a series of reactions that is summarised by the equation below.

\[2\text{H}_2\text{O}(l) + \text{O}_2(\text{aq}) + 4\text{I}^- (\text{aq}) \rightarrow 4\text{OH}^- (\text{aq}) + 2\text{I}_2(\text{aq}) \]

When a 2000 cm3 sample of river water was tested, 0.508 g of iodine was liberated.

Calculate the concentration, in mol/dm3, of dissolved oxygen in the river water sample. [3]

B9 Fertilisers are soluble salts containing one or more of the essential elements required for plant growth.

(a) Ammonium chloride can be prepared by the reaction between aqueous ammonia and hydrochloric acid.

Write an ionic equation for this reaction. [1]

(b) State suitable reagents and outline the experimental procedure by which a pure sample of the fertiliser potassium chloride could be prepared in the laboratory. [4]

(c) Potassium sulphate can be prepared by the reaction between dilute sulphuric acid and potassium carbonate.

\[\text{H}_2\text{SO}_4 + \text{K}_2\text{CO}_3 \rightarrow \text{K}_2\text{SO}_4 + \text{CO}_2 + \text{H}_2\text{O} \]

Calculate the mass of potassium sulphate that can be prepared from 3.45 g of potassium carbonate. [3]

(d) Give electronic structures, including the charges, of the ions present in potassium chloride. [2]
Brass is an alloy containing zinc and copper.

(a) Explain why the physical properties of brass are different from those of zinc and copper. [1]

(b) A sample of powdered brass is added to excess dilute nitric acid.

The mixture is heated gently until all the brass reacts.

The resulting solution, A, contains aqueous copper(II) ions and aqueous zinc ions.

(i) Suggest the colour of solution A. [1]
(ii) Describe and explain, with the aid of equations, what happens when aqueous sodium hydroxide is slowly added to solution A. [5]

(c) Another sample of powdered brass is added to excess dilute hydrochloric acid.

The mixture is heated and an aqueous solution of a compound B together with a solid C are formed.

(i) Name both B and C. [2]
(ii) Write an ionic equation for this reaction. [1]
Macromolecules are large molecules built up from many small units.

Proteins and fats are natural macromolecules. Poly(chloroethene) and poly(ethene) are synthetic macromolecules.

(a) Name the type of linkage joining the units in fats. [1]

(b) Proteins can be hydrolysed into monomers by boiling with concentrated hydrochloric acid.

(i) Name the monomers produced in this hydrolysis. [1]

(ii) Suggest why clothes made from nylon are damaged by concentrated hydrochloric acid. [1]

(c) Poly(chloroethene) is made from the monomer chloroethene. The structure of chloroethene is shown below.

\[
\begin{align*}
\text{H} & \quad \text{Cl} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]

(i) Draw the structure of poly(chloroethene). [1]

(ii) Explain why poly(chloroethene) has a low melting point. [1]

(iii) Describe what you would observe when bromine reacts with chloroethene and state what type of reaction takes place. Explain why bromine will not readily react with poly(chloroethene). [3]

(d) State and explain why plastics such as poly(ethene) may cause problems of pollution. [2]
The Periodic Table of the Elements

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>39</td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
</tr>
<tr>
<td>85</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
</tr>
<tr>
<td>133</td>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Sm</td>
<td>Eu</td>
</tr>
<tr>
<td>164</td>
<td>Ra</td>
<td>Ac</td>
<td>Actinium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*58-71 Lanthanoid series
†90-103 Actinoid series

Key
- a = relative atomic mass
- b = proton (atomic) number
- X = atomic symbol

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).