NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

B marks are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored. A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.

A marks A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored. A marks are commonly awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded. It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. An A mark following an M mark is a dependent mark.

Brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

Underlining indicates that this must be seen in the answer offered, or something very similar.

OR/or indicates alternative answers, any one of which is satisfactory for scoring the marks.

e.e.o.o. means "each error or omission".

o.w.t.t.e. means "or words to that effect".

Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit. However, do not allow ambiguities, e.g. spelling which suggests confusion between reflection/refraction/diffraction or thermistor/transistor/transformer.

Not/NOT indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Ignore indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.

ecf meaning "error carried forward" is mainly applicable to numerical questions, but may in particular circumstances be applied in non-numerical questions. This indicates that if a
candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by ecf may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated ecf.

Significant figures
Answers are normally acceptable to any number of significant figures ≥ 2. Any exceptions to this general rule will be specified in the mark scheme.

Units
Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working.

Fractions
Allow these only where specified in the mark scheme.
1 (a) (i) (liquid) has a uniform expansion/expands at a constant rate/expands evenly/expands linearly B1

(ii) any two from:
- larger bulb/wider/longer bulb
- more liquid
- narrower capillary/tube
- use liquid with greater expansion B2

(iii) thermometer must be longer B1

(b) any 2 from:
- resistance/conductance of a metal/wire/conductor/thermistor
- voltage/current of a thermocouple
- volume/pressure/expansion/contraction of a gas
- colour of a metal
- amount of radiation OR frequency OR wavelength of radiation from a metal/furnace
- colour/arrangement of liquid crystals
- expansion of a solid/any dimension of a solid
- bending of a bimetallic strip B2

[Total: 6]

2 (a) (density =) mass/volume B1

(b) water used in measuring/graduated cylinder B1

- volume of water known or read/recorded/taken B1
- place the coins in the water and read/record/take new level of water in cylinder B1
- subtract readings B1

OR ALTERNATIVE METHOD:
- pour water into displacement can to level of spout (B1)
- place the coins/several coins in the water (B1)
- collect overflow (B1)
- measure volume of overflow water using measuring graduated cylinder (B1)
- measure mass/weigh the coins used with balance/spring balance B1
(c) one from:
read measuring cylinder levels at bottom of meniscus
repeat volume measurement and find average
place eye level with surface in measuring cylinder (to avoid parallax error)
place coins one at a time to avoid air bubbles between coins
avoid splashing when adding coins to water
make sure coins are dry/clean
use narrow/small measuring cylinder
place containers on horizontal surface
check zero of balance/spring balance/scales
displacement can method: make sure dripping finishes before and after adding coins B1

[Total: 7]

3 (a) $F d$ OR weight $\times d$ OR mgh OR $30000 \times 10 \times 140$ OR 4.2×10^7 seen anywhere C1

$(P =)$ E/t OR W/t OR mgh/t symbols or words C1

$4.2 \times 10^7 / 60$ C1

$7.0 \times 10^5 W/700 kW/0.7 MW$ A1

(b) efficiency = output/input OR $(P_{in} =) 100 \times P_{out}/efficiency$ C1

$(P_{in} =) 100 \times 7 \times 10^5/70$ C1

$1.0 \times 10^6 W OR 1000000 W OR 1.0 MW$ A1

(c) (horizontal) wind has no effect on P.E gained/vertical force on water
OR same upward/vertical force acts on water
OR force from wind is horizontal B1

[Total: 8]

4 (a) 2 lines at 90° to each other of same length labelled 30 N or 6 cm B1

both lines $6.0 \pm 0.2 \text{ cm}$. B1

arrows on the two lines drawn, either head to tail
OR a complete square shown with diagonal and arrows on adjacent sides

resultant in range 40–45 N B1

(b) (vertically) upwards B1
(c) same as value in (a), only if answer to (a) is a force
OR 40–45 N
B1

[Total: 6]

5 (a) (i) \(W = mg = 1440 \times 10 = 14400 \text{ N} \)
B1

(ii) \(P = \frac{F}{A} \) OR \(14400 / (1.5 \times 1.2) \)
8000 Pa OR N/m\(^2\)
A1

(b) (i) \(P = \rho gh \) OR \(1.4 \times 1000 \times 10 \)
14000 Pa OR N/m\(^2\)
A1

(b) (ii) pressure on base of \(P \) smaller/\(Q \) greater
M1
(with same volume removed) smaller decrease in depth in \(Q \)
OR height in \(Q \) is greater
A1

[Total: 7]

6 (a) (molecules) move in random directions/randomly/with constant random motion/zig-zag motion/in all directions
B1

(molecules) have random speeds OR a range of speeds OR move (very) fast/at (very) high speed
B1

any 1 from:
(molecules) collide with each other
(molecules) move in straight lines between collisions
(molecules) change direction in collisions
(molecules) collide with walls (of cylinder)
B1

(b) (i) pressure increases
M1
more frequent collisions between molecules and walls
OR molecules collide with walls more often/at greater rate
A1

(ii) \(pV = \text{constant} \)
OR \(p_1 V_1 = p_2 V_2 \) in any form
OR \(1.0 \times 10^5 \times 500 = p_2 \times 240 \)
\(2.1 \times 10^5 \text{ Pa} \) to 2 or more sig. figs
A1

[Total: 7]
Question 7

(a) (a liquid evaporates) at any temperature/below the boiling point/over a range of temperatures/below 100°C/at different temperatures/not at a fixed temperature B1

(during evaporation) vapour forms at/escapes from the surface of the liquid B1

(without a supply of thermal energy,) evaporation continues/occurs/doesn’t stop OR causes liquid to cool/is slower/reduces B1

(b) (i) \(Q = mL \) OR \(0.075 \times 2.25 \times 10^6 \)
\(1.7 \times 10^5 \) J A1

(ii) \(E = VIt \) OR \(240 \times 0.65 \times (20 \times 60) \) C1
OR \(P = IV \) and \(P = E/t \) OR energy/time
\(1.9 \times 10^5 \) J A1

(iii) energy is transferred to the surroundings OR in heating the surroundings/air/atmosphere/hot-plate B1

[Total: 8]

Question 8

(a) speed of sound in gas: 300 m/s B1

speed of sound in solid: 3000 m/s B1

(b) particles/molecules/atoms oscillate/vibrate OR pressure variation/compressions/rarefactions/displacements move in the direction of travel (of the wave/sound) B1

(c) (i) two complete wavelengths/cycles with shorter wavelength B1

wave drawn has greater amplitude B1

(ii) higher frequency/pitch B1

louder/higher volume B1

[Total: 8]

Question 9

(a) (i) \(I = \frac{V}{R} \) OR \(6/(12 + 4) \) OR \(6/16 \) C1
\(0.38 \) A/0.37 A A1
(ii) \[\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \]
OR \(R = \frac{R_1 R_2}{R_1 + R_2} \)
OR above with numbers substituted

\[R = 3 \, (\Omega) \]

\(I = \frac{6}{3} = 2.0 \, A \)

OR ALTERNATIVE METHOD:

\[\frac{6}{12} \]
\[+ \frac{6}{4} \]
\[2.0 \, A \]

(b) (i) \(R \propto l \) (in words or symbols)
OR directly proportional OR e.g. \(R \) doubles when \(l \) doubles

(ii) \(R \propto \frac{1}{A} \) (or with words)
OR inversely proportional OR e.g. \(R \) doubles when \(A \) halves

(c) \[\frac{4}{12} \] OR \[4:12 \] OR \[1/3 \] OR \[1:3 \] OR \[0.33 \]

[Total: 8]

10 (a) slip-rings (and brushes)

(b) (i) sinusoidal curve, any value at \(t = 0 \)

(ii) appropriate \(T \) value indicated on graph

(iii) smaller \(T \)/time of one cycle OR higher frequency

higher maximum current/greater amplitude/higher peaks/higher peak-to-peak

(c) diode/rectifier

[Total: 6]

11 (a) \(\gamma \): none/zero/0/neutral AND
2 cm (or more) of lead/thick lead/50 cm (or more) of concrete

\(\beta \): particle/electron AND
any named metal/glass/concrete OR 1 m of air

\(\alpha \): particle/helium nucleus/2 protons + 2 neutrons/\(^4\)He/\(^4\)\(\alpha \) AND
positive OR + OR +2

© Cambridge International Examinations 2014
(b) (i) 38
 (ii) 90
 (iii) 52
 (iv) 38

(c) 36 hours = 3 half-lives
 OR halving in steps from 4800 to 600 seen
 half-life = 12 hours OR 3 half-lives OR $\frac{2}{3}$ of 36
 (further time to reduce to 150 Bq =) 24 (hours)

[Total: 9]