MARK SCHEME for the March 2015 series

0625 PHYSICS

0625/62 Paper 6 (Alternative to Practical), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE® components.

© IGCSE is the registered trademark of Cambridge International Examinations.
NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

Brackets () Brackets around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

Underlining Underlining indicates that this must be seen in the answer offered, or something very similar.

OR / or This indicates alternative answers or words, any one of which is satisfactory for scoring the marks.

AND Both answers or words must be given for credit to be awarded.

e.e.o.o. This means "each error or omission".

o.w.t.t.e. This means “or words to that effect”.

c.a.o. This means “correct answer only”.

NOT This indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate, i.e. right plus wrong penalty applies.

e.c.f. This means "error carried forward". If a candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by e.c.f. may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate from being penalised more than once for a particular mistake, but only applies to marks annotated e.c.f.
1 (a) measure ½ mass length either side of 95.0 cm
 OR mark side of mass AND rule [1]

(b) correct calculations of S, rounding to 0.17, 0.33, 0.51, 0.61, 0.80 [1]

(c) axes labelled with quantity and unit
 appropriate scales
 plots correct to ½ small square
 well-judged straight line, thin line, precise plots [1]

(d) (i) G present AND triangle method seen on graph [1]

 (ii) $M_r = \text{in range 113 to 140 g AND to 2/3 sig. fig.}$ [1]

(e) see if rule balances when pivot at 50 cm mark owtte [1]

[Total: 9]

2 (a) units correct, accept symbols or words
 t values correct: 0, 30, 60, 90, 120, 150, 180 [1]

(b) statement matching results with comparison of temperature changes over
 whole available range OR for 120 s from 71°C
 justification with mention of ‘in the same time’ owtte [1]

(c) two precautions relating to temperature measurement, e.g.
 • thermometer at same depth
 • read thermometer with reading at eye level/90° to scale/explain parallax
 • wait until thermometer has stopped rising (at the start) [2]

(d) two improvements to apparatus or procedure, e.g.
 • insulation all way up side of test-tube/covering bottom of test-tube
 • start taking measurements at same temperature/same initial temp. of water
 • same volume of water/use measuring cylinder for water
 • plot cooling curves
 • use metal/thinner glass test-tubes
 • more layers of insulation
 • make sure insulation is dry
 • avoid overlapping insulation
 • use same tube/same tube thickness in each experiment [2]

[Total: 8]
3 (a) correct voltmeter symbol with appropriate parallel connection

(b) (i) meter with 5 V range circled

(ii) arrow indicating 1.5 V on circled meter

(c) R calculations correct (9.6 or 9.62, 7.9 or 7.89, 4.5 or 4.55)

consistent 2 or consistent 3 sig. figs.

note: allow 1 sig. fig. fewer for $l = 20$ cm

(d) link consistent with results

figures to support, matching statement – at least two R values compared

(e) increased supply voltage

use of variable resistor OR variable voltage supply clearly indicated as such

any other suitable point, e.g.

• voltmeter with larger range

• ammeter with larger range

• variable resistor symbol and connection correctly shown

[Total: 10]

4 (a) (i) $u_1 = 5.0$ (cm)/50 (mm)

$v_1 = 8.7$ (cm)/87 (mm)

(ii) correct calculation of f, expect 3.1 to 3.2 (cm)/31 to 32 (mm), e.c.f. (a)(i)

matching unit

(b) u_2 in range 8.8 to 8.9 (cm)/88 to 89 (mm) AND statement matching results

appropriate justification e.g. within limits of experimental accuracy owtte

(c) two appropriate precautions, e.g.

• carry out experiment in dark room/no direct (sun)light/bright lamp

• lens and object same height above bench

• lens, object and screen vertical

• move screen/lens back and forth/slowly to obtain sharp image

• fix/place rule on bench

• mark centre of lens on holder

• readings repeated

[Total: 8]
5 (a) $\theta_H = 74$ AND $\theta_C = 23(°C)$

(b) (i) suitable reason, e.g.
• temperature not able to reach max θ_H (in 30s)
• temperature dropped on transfer
• conduction/transfer to metal tongs

matching improvement, e.g.
• leave block in hot water longer
• transfer more quickly
• use insulated tongs/cotton round block

(ii) suitable reason, e.g.
• some (thermal) energy transferred to beaker,
• some (thermal) energy transferred to surroundings,
• evaporation/convection (into atmosphere)

matching improvement, e.g.
• use a less conducting material for beaker/owtte
• insulate beaker
• allow for beaker in any calculation
• lid on beaker

[Total: 5]