CAMBRIDGE INTERNATIONAL MATHEMATICS

Paper 1 (Core)

Candidates answer on the Question Paper.

Additional Materials: Geometrical Instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, glue or correction fluid.
You may use an HB pencil for any diagrams or graphs.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.
All answers should be given in their simplest form.
You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 40.
Formula List

Area, A, of triangle, base b, height h.

\[A = \frac{1}{2} bh \]

Area, A, of circle, radius r.

\[A = \pi r^2 \]

Circumference, C, of circle, radius r.

\[C = 2\pi r \]

Curved surface area, A, of cylinder of radius r, height h.

\[A = 2\pi rh \]

Curved surface area, A, of cone of radius r, sloping edge l.

\[A = \pi rl \]

Curved surface area, A, of sphere of radius r.

\[A = 4\pi r^2 \]

Volume, V, of prism, cross-sectional area A, length l.

\[V = Al \]

Volume, V, of pyramid, base area A, height h.

\[V = \frac{1}{3} Ah \]

Volume, V, of cylinder of radius r, height h.

\[V = \pi r^2 h \]

Volume, V, of cone of radius r, height h.

\[V = \frac{1}{3} \pi r^2 h \]

Volume, V, of sphere of radius r.

\[V = \frac{4}{3} \pi r^3 \]
Answer all the questions.

1 Work out.

\[6 + 24 \div 3 \]

\[\text{.. [1]} \]

2 By rounding each number to one significant figure, estimate the value of \(3.17 \times 4.8 \).

\[\text{.. [2]} \]

3 Work out \(\frac{2}{3} \) of 21.

\[\text{.. [1]} \]

4 Find 20% of 200.

\[\text{.. [1]} \]

5 Write down a square number between 12 and 18.

\[\text{.. [1]} \]

6 (a) Write \(2 \times 2 \times 2 \) as a power of 2.

\[\text{.. [1]} \]

(b) Work out \(3^2 \).

\[\text{.. [1]} \]
7

The diagram shows a triangle on a 1 cm² grid.
Find the area of the triangle.

................................. cm² [1]

8

The length of this rectangle is 9 cm.
The perimeter of this rectangle is 30 cm.
Work out the width of this rectangle.

................................. cm [2]

9

1 kg of bananas and 2 kg of pears cost $5.95 in total.
Pears cost $1.80 per kilogram.
Work out the cost of 1 kg of bananas.

$................................. [2]
10 Find the lowest common multiple (LCM) of 12 and 16.

\[\text{LCM} \]

11

(a) Write down the co-ordinates of point \(A \).

\((..........................) \) \[1\]

(b) Plot the point \((-3, 1)\). Label this point \(B \).

12

Find the values of \(x \) and \(y \).

\[x = \text{..........................} \]

\[y = \text{..........................} \] \[2\]
13 The point P has co-ordinates $(2, 12)$ and the point Q has co-ordinates $(10, 8)$.

Find the co-ordinates of the midpoint of PQ.

\[\text{(..........................)} \] [2]

14 The list shows the mark for each of ten students in an examination.

\[\begin{array}{cccccccc}
7 & 9 & 5 & 5 & 8 & 2 & 6 & 4 & 4 & 9 \\
\end{array} \]

(a) Find the median.

\[\text{..........................} \] [2]

(b) Find the mean.

\[\text{..........................} \] [2]

15 \(A = \{2, 3, 4, 5, 6, 7\} \)
\(B = \{2, 3, 5, 8\} \)

(a) Write down \(n(A) \).

\[\text{..........................} \] [1]

(b) Write down the elements of \(A \cup B \).

\[\{ \text{..........................} \} \] [1]

16 The equations of some straight lines are shown below.

\[\begin{align*}
x &= 4 & y &= 3x - 3 & y &= 4x - 3 \\
y &= 4x + 7 & y &= 4 & y &= -3x - 3 \\
\end{align*} \]

Write down the equations of the two lines that are parallel.

\[\text{..........................} \quad \text{and} \quad \text{..........................} \] [1]
On the grid, draw the image of triangle A after a reflection in the line $y = 1$.

18 Describe the single transformation that maps $y = f(x)$ onto $y = f(x) - 2$.

19 $f(x) = x^2 + 3$

Find the range of $f(x)$ when the domain is $\{-2, 0, 2, 3\}$.

{ .. } [2]

Questions 20, 21 and 22 are printed on the next page.
20 Simplify fully.

$$\frac{2e}{5} \times \frac{f}{3e}$$

.. [2]

21 Write down all integer values of \(x\) that satisfy

\(-3 < x \leq 1\).

.. [2]

22 Solve the simultaneous equations.

$$5x - y = 7$$
$$4x - y = 5$$

\(x = \ldots\) ..

\(y = \ldots\) .. [2]