DESIGN AND TECHNOLOGY

Paper 0445/11
Product Design

Key messages

- When listing additional points about the function of the product in response to part (a), candidates should try to avoid the use of generic requirements that could apply to any product. The response must relate to a specific function relevant to the chosen design question. Care should be taken to avoid points already given in the question.
- Full solutions to the design problem, drawn in response to part (e), should show all dimensions and construction details rather than manufacturing methods that might be used in the school workshop/studio.
- The methods used to manufacture one part of the solution should be answered in part (g). Care should be taken to avoid duplicating or repeating this in both sections.
- Candidates should avoid describing generic manufacturing methods, particularly where CAD and CAM methods form part of the answer. The response must relate to the description of the method used to make part of their final solution shown in part (e).

General comments

Most candidates responded well to the question of their choice and many showed that they were able to engage with the design problem and access the marks available in each section.

The A3 answer sheets are intended to help candidates follow the required design process and those who responded as and where required were able to successfully evidence their design and thinking skills.

Some candidates showed a high level of original thinking in their design work and used high quality drawing and sketching techniques to communicate their ideas.

Candidates are asked to indicate the question number they have chosen to answer, in the rubric box at the foot of each A3 answer sheet.

Centres are reminded that there is no requirement to include question papers when sending scripts to Cambridge.

Comments on specific questions

Section A

Question 1

This was the most popular question and the majority of candidates understood clearly the requirements of a storage unit for apples that would provide good air circulation.

(a) Many candidates scored high marks on this first question as they were able to identify additional important points relating to the function of the apple storage unit. Successful responses included: use of non-toxic materials; easy to access the apples; keeps apples off the floor; takes up as little floor space as possible. General responses such as ‘easy to use’ or ‘durable’ can be awarded marks only where the specific reason for the requirement is given. Responses giving functions that are already stated in the question cannot be awarded marks.
(b) Most candidates were able to show a method of allowing good air circulation around the apples in the storage unit. Appropriate responses included: slotted construction; ventilation holes; grill mesh; cooling fan.

(c) The majority of candidates presented three ideas that responded appropriately to the design problem and produced creative designs that showed a solution to the problem. Successful candidates used a range of communication techniques and enhanced their designs using shading, colour and annotation to show details and information on the function and features of their designs.

Candidates are advised to use all the space allocated to the answer for this part of the question so that they can show all information clearly.

(d) Many candidates were able to identify both positive and negative aspects of their designs in relation to the context of the question. This was often more successful when the candidate related their comments to the functional points described in their response to part (a). Successful candidates included clear and valid reasons for their judgements rather than simple descriptions of each of their ideas. The majority of candidates selected one of their ideas to develop more fully. Successful candidates justified their reasons for the choice of idea by explaining what features of the design made it better than the others.

(e) The level of response to this question varied considerably. Most candidates were able to provide a response that showed their chosen solution to the problem using a sketch and notes. Successful candidates presented a clear, overall view of the solution using an appropriate drawing format and added details of construction in the form of additional sketches, diagrams and written annotations. Most candidates added overall dimensions to their responses, and many provided additional dimensions of other details.

(f) Most candidates were able to suggest two appropriate specific materials for their solution presented in part (e). Many candidates were also able to provide valid reasons for their choice of material. Successful candidates gave specific properties of the materials that made them appropriate for use on their solution.

(g) The level of response to this question varied considerably. Most candidates were able to provide some description of a manufacturing method. Some candidates outlined methods that did not relate to any part of their chosen solution or described methods that were unsuitable. Successful candidates outlined an appropriate method for producing part of their solution using notes and sketches that included details of processes, equipment and tools used.

Question 2

This question, intended for those following the Graphic Products option, was answered by a significant number of candidates. The requirements of a portable display to encourage people to buy and eat locally grown fruit appeared to be understood and received well by candidates.

(a) The majority of candidates scored well on this question as they were able to identify additional important points relating to the function of the portable display. Successful responses included: lightweight; stable in use; attracts attention; green/environmental appearance. General responses such as ‘safe to use’ can be awarded marks only where the specific reason for the requirement is given. Responses giving functions that are already stated in the question cannot be awarded marks.

(b) Most candidates were able to show methods of temporarily joining lightweight materials together. Appropriate responses included: various slotted joints; adhesive tape; mastic putty adhesive (such as ‘blu tack’); ‘Velcro’; split pins/paper fasteners. Although this question was intended for Graphic Products candidates, some candidates showed methods more suited to temporarily joining resistant materials together such as screws or nuts and bolts.
(c) See Question 1 (c) – (g)

(e)

(f)

(g)

Question 3

This question was answered by a small proportion of candidates. Candidates appeared to identify with the problem and were able to make use of their knowledge and experience of systems and control in a useful and interesting way.

(a) Most candidates who responded to this question were able to identify four additional important points relating to the function of the apple picking device and scored well. Successful responses included: not damage the fruit; hold different sizes of fruit; adjustable in length; lightweight; easy to grip; weatherproof.

(b) Most candidates were able to show two different mechanical methods of gripping or holding the fruit. Appropriate responses included: open sided/topped cage; gripping 'fingers'; fabric pouch; g-clamp type grip; scoop.

(d) See Question 1 (c) – (g)
Key messages

- When listing additional points about the function of the product in response to part (a), candidates should try to avoid the use of generic requirements that could apply to any product. The response must relate to a specific function relevant to the chosen design question. Care should be taken to avoid points already given in the question.
- Full solutions to the design problem, drawn in response to part (e), should show all dimensions and construction details rather than manufacturing methods that might be used in the school workshop/studio.
- The methods used to manufacture one part of the solution should be answered in part (g). Care should be taken to avoid duplicating or repeating this in both sections.
- Candidates should avoid describing generic manufacturing methods, particularly where CAD and CAM methods form part of the answer. The response must relate to the description of the method used to make part of their final solution shown in part (e).

General comments

Most candidates responded well to the question of their choice and many showed that they were able to engage with the design problem and access the marks available in each section.

The A3 answer sheets are intended to help candidates follow the required design process and those who responded as and where required were able to successfully evidence their design and thinking skills.

Some candidates showed a high level of original thinking in their design work and used high quality drawing and sketching techniques to communicate their ideas.

Candidates are asked to indicate the question number they have chosen to answer, in the rubric box at the foot of each A3 answer sheet.

Centres are reminded that there is no requirement to include question papers when sending scripts to Cambridge.

Comments on specific questions

Section A

Question 1

This was the most popular question and the majority of candidates understood clearly the requirements of a portable unit for storing and displaying eight different types of vegetable.

(a) Many candidates scored high marks on this first question as they were able to identify additional important points relating to the function of the storage and display unit. Successful responses included: ease of access to vegetables; stable – cannot topple over; weatherproof; security aspects; easy to clean. General responses such as ‘easy to use’ or ‘durable’ can be awarded marks only where the specific reason for the requirement is given. Responses giving functions that are already stated in the question cannot be awarded marks.
Most candidates were able to show two different methods to make the unit portable. Appropriate responses included: wheels; rollers; carrying handles; track systems.

The majority of candidates presented three ideas that responded appropriately to the design problem and produced creative designs that showed a solution to the problem. Successful candidates used a range of communication techniques and enhanced their designs using shading, colour and annotation to show details and information on the function and features of their designs.

Candidates are advised to use all the space allocated to the answer for this part of the question so that they can show all information clearly.

Many candidates were able to identify both positive and negative aspects of their designs in relation to the context of the question. This was often more successful when the candidate related their comments to the functional points described in their response to part (a). Successful candidates included clear and valid reasons for their judgements rather than simple descriptions of each of their ideas. The majority of candidates selected one of their ideas to develop more fully. Successful candidates justified their reasons for the choice of idea by explaining what features of the design made it better than the others.

The level of response to this question varied considerably. Most candidates were able to provide a response that showed their chosen solution to the problem using a sketch and notes. Successful candidates presented a clear, overall view of the solution using an appropriate drawing format and added details of construction in the form of additional sketches, diagrams and written annotations. Most candidates added overall dimensions to their responses, and many provided additional dimensions of other details.

Most candidates were able to suggest two appropriate specific materials for their solution presented in part (e). Many candidates were also able to provide valid reasons for their choice of material. Successful candidates gave specific properties of the materials that made them appropriate for use on their solution.

The level of response to this question varied considerably. Most candidates were able to provide some description of a manufacturing method. Some candidates outlined methods that did not relate to any part of their chosen solution or described methods that were unsuitable. Successful candidates outlined an appropriate method for producing part of their solution using notes and sketches that included details of processes, equipment and tools used.

This question, intended for those following the Graphic Products option, was answered by a significant number of candidates. The requirements of a lightweight countertop display to hold the items in the vegetable growing kit appeared to be understood and received well by candidates.

The majority of candidates scored well on this question as they were able to identify additional important points relating to the function of the countertop display. Successful responses included: stability with the weight of the items attached; portability; visual appeal to children; robust construction; moisture resistance. Responses such as ‘safe to use’ can be awarded marks only where the specific reason for the requirement is given. Responses giving functions that are already stated in the question cannot be awarded marks.

Most candidates were able to show two methods of attaching the items in the kit to card. Appropriate responses included: staples, shelves; adhesive tape; mastic putty adhesive (such as ‘blu tack’); ‘Velcro’; wire ties; elastic bands.
Question 3

This question was answered by a small proportion of candidates. Candidates appeared to identify with the problem and were able to make use of their knowledge and experience of systems and control in a useful and interesting way.

(a) Most candidates who responded to this question were able to identify four additional important points relating to the function of the apple peeling machine and scored well. Successful responses included: safe to use; not damage the fruit; portable; adapt to different sizes of apple; easy to clean; hygienic to use.

(b) Most candidates were able to show two different methods of converting rotary motion into linear motion. Appropriate responses included: cam and follower, crank and slider, screw thread and follower, rack and pinion.

(c)

(d) See Question 1 (c) – (g)

(e)

(f)

(g)
Key messages

- When listing additional points about the function of the product in response to part (a), candidates should try to avoid the use of generic requirements that could apply to any product. The response must relate to a specific function relevant to the chosen design question. Care should be taken to avoid points already given in the question.

- Full solutions to the design problem, drawn in response to part (e), should show all dimensions and construction details rather than manufacturing methods that might be used in the school workshop/studio.

- The methods used to manufacture one part of the solution should be answered in part (g). Care should be taken to avoid duplicating or repeating this in both sections.

- Candidates should avoid describing generic manufacturing methods, particularly where CAD and CAM methods form part of the answer. The response must relate to the description of the method used to make part of their final solution shown in part (e).

General comments

Most candidates responded well to the question of their choice and many showed that they were able to engage with the design problem and access the marks available in each section.

The A3 answer sheets are intended to help candidates follow the required design process and those who responded as and where required were able to successfully evidence their design and thinking skills.

Some candidates showed a high level of original thinking in their design work and used high quality drawing and sketching techniques to communicate their ideas.

Candidates are asked to indicate the question number they have chosen to answer, in the rubric box at the foot of each A3 answer sheet.

Centres are reminded that there is no requirement to include question papers when sending scripts to Cambridge.

Comments on specific questions

Section A

Question 1

This was the most popular question and the majority of candidates understood clearly the requirements of a portable holder for paint brushes and brush cleaner.

(a) Many candidates scored high marks on this first question as they were able to identify additional important points relating to the function of the paint brush and brush cleaner holder. Successful responses included: lightweight; easy to clean; holds brushes and bottle firmly; easily accessible. General responses such as ‘easy to use’ or ‘durable’ can be awarded marks only where the specific reason for the requirement is given. Responses giving functions that are already stated in the question cannot be awarded marks.
Most candidates were able to show two different types of carrying handle. Appropriate responses included: slots/holes; grooves; rope handles; straps; belts.

The majority of candidates presented three ideas that responded appropriately to the design problem and produced creative designs that showed a solution to the problem. Successful candidates used a range of communication techniques and enhanced their designs using shading, colour and annotation to show details and information on the function and features of their designs.

Candidates are advised to use all the space allocated to the answer for this part of the question. So that they can show all information clearly.

Many candidates were able to identify both positive and negative aspects of their designs in relation to the context of the question. This was often more successful when the candidate related their comments to the functional points described in their response to part (a). Successful candidates included clear and valid reasons for their judgements rather than simple descriptions of each of their ideas. The majority of candidates selected one of their ideas to develop more fully. Successful candidates justified their reasons for the choice of idea by explaining what features of the design made it better than the others.

The level of response to this question varied considerably. Most candidates were able to provide a response that showed their chosen solution to the problem using a sketch and notes. Successful candidates presented a clear, overall view of the solution using an appropriate drawing format and added details of construction in the form of additional sketches, diagrams and written annotations. Most candidates added overall dimensions to their responses, and many provided additional dimensions of other details.

Most candidates were able to suggest two appropriate specific materials for their solution presented in part (e). Many candidates were also able to provide valid reasons for their choice of material. Successful candidates gave specific properties of the materials that made them appropriate for use on their solution.

The level of response to this question varied considerably. Most candidates were able to provide some description of a manufacturing method. Some candidates outlined methods that did not relate to any part of their chosen solution or described methods that were unsuitable. Successful candidates outlined an appropriate method for producing part of their solution using notes and sketches that included details of processes, equipment and tools used.

This question, intended for those following the Graphic Products option, was answered by a significant number of candidates. The requirements of a package for the three paint brushes appeared to be understood and received well by candidates.

The majority of candidates scored well on this question as they were able to identify additional important points relating to the function of the paintbrush packaging. Successful responses included: lightweight; eye-catching/appealing to the customer; holds brushes firmly; easy to stack. Responses such as ‘safe to use’ can be awarded marks only where the specific reason for the requirement is given. Responses giving functions that are already stated in the question cannot be awarded marks.

Most candidates were able to show two methods of making the contents of the package visible. Appropriate responses included: clear window; transparent material; cut out; partially packaged.

See Question 1 (c) – (g)
Question 3

This question was answered by a small proportion of candidates. Candidates appeared to identify with the problem and were able to make use of their knowledge and experience of systems and control in a useful and interesting way.

(a) Most candidates who responded to this question were able to identify four additional important points relating to the function of the device designed to shake a spray paint can and scored well. Successful responses included: hold can firmly; portable; safe to use; take different sized cans; not damage the paint can; not spray any paint in use.

(b) Most candidates were able to show two different types of movement that would effectively shake the spray paint can. Appropriate responses included: linear; oscillating; rotary; reciprocating; vibrating.

(c)

(d) See Question 1 (c) – (g)

(e)

(f)

(g)
Key messages

- The focus of this assessment is Graphic Products. Future candidates would benefit from practical activities based on the questions contained in this paper.

General comments

Candidates were required to complete all questions in Section A (A1, A2 and A3) and then go on to answer either B4 or B5 from Section B. An equal number of candidates chose to answer Question B4 and B5. A small number of candidates did not follow the rubric instruction and answered all the questions.

The standard of work was slightly lower than that of the previous year.

There are areas of the syllabus however, in which further improvements are needed. Candidates must be able to draw simple solid objects in Orthographic projection and to scale. With the increasing use of computers, candidates need to know the advantages of CAD and CAM. The drawing of shapes in isometric projection is also an area that needs further improvement.

Comments on specific questions

Question A1

Exit sign

A concept drawing of an exit sign was given with relevant dimensions. The apex of the head of the arrow and the vee of the tail was given as starting points. Many candidates drew their solution on the isometric axis.

(a) Candidates could have improved on their responses as the given sizes were not always used and consequently the angles to the tail and the shape of the arrowhead were not always accurate.

(b) Some candidates omitted the thickness of the arrow, visible on all the top edges.

Question A2

This question asked the candidate to complete the lettering of the word EXIT by adding the X and the T to the sign. The letters had been given on a grid. The grid spacing was intended to help the candidate draw to the correct size and projection.

Question A3

Photos not allowed sign

Not all candidates attempted all parts of this compulsory question.

(a) (i) The outer border of the sign needed to be a regular Octagon of 260A/F. The drawing of the sign was required to be half size. Candidates who drew a 130 × 130 square on the given centre lines, and then used the half diagonals to determine the corners of the Octagon achieved full marks. A concentric circle R55 and a diagonal bar, 15 wide and at 45° completed the outer of the prohibition sign.
(ii) To complete the camera shape, a rectangle of 70×46 was required to be drawn. The lens of the camera was represented by concentric circles of R20 and R17. The top of the camera needed to be completed by extending the two top lines until they met the diagonal bar with a small return angle at the end.

(b) The stimulus for this part of the question showed graphical images of how the prohibition sign was constructed from two parts. Candidates were asked to design a second backboard prohibiting food and drink in a similar style to the example given. Correct answers showed an image of food and drink in silhouette (no shading) and without a cross bar. The cross bar already existing in Part A.

Question B4

Litter Bin

This question was derived from an actual ‘Graphic Product’ made as a concept model.

Overall, candidates gained a wide range of marks for their answers.

(a) Candidates were asked to complete the orthographic views of the litter bin by drawing the side and end views. The outer shape of the plan view was given. Candidates who projected the edges from the plan to the side and end view achieved a better result.

The side view was to be drawn 90 high with a point 20 on top. The cut-out on this view was to be on the Left-Hand side and 20 high, a distance of 10 from the top.

The front view needed to be drawn showing three sides and to the same height of the side view. The cut-out in this view would extend to half-way across the two side faces.

The top in the plan view needed to have diagonal lines from each corner of the hexagon to show the 6 facets of the top.

(b) A part completed view of the inner steel liner of the litter bin was given. Candidates were required to complete the pictorial view by adding the top ellipse. Some candidates drew only half the ellipse.

Where a Trammel is used for constructing an Ellipse, this must be attached or drawn adjacent to enable marks for construction to be awarded.

(c) (i) Candidates were asked to State two advantages of using CAD to produce the image. Full statements were required for full marks.

(ii) A self-adhesive sticker was to be made of the given image. Candidates were asked to name one suitable CAM machine for making the sticker.

(iii) This part of the question asked candidates for the maximum size of the sticker that could be used in the space available. From the original pictorial view, the maximum size possible is 600×250.

Question B5

Card leaflet holder

This question was also derived from a real ‘Product’.

Overall, candidates gained a wide range of marks for their answers.

(a) Candidates were required to compete the development (net) of a leaflet holder to a scale of 1:2. The outline of the right-hand side and some fold lines were given. Candidates were to add the backboard 100×55, the left side 35 wide and with the correct slope and top radius. The base 55×35 with flaps both sides and to the bottom. All fold lines added were to be to the correct convention.

(b) This part of the question required candidates to complete process boxes to show the tools or equipment they would use to carry out the three given processes.
(c) (i) Suitable adhesives for joining the development (net) include:

PVA, cool melt glue, hot glue, pattex, double sided tape, Gorilla glue etc.

(ii) A die cutter can cut multiples in one cut. Each net is exactly the same.

(d) The relevant shapes of the component parts were to be drawn to a scale of 1:3 in the required boxes. Many candidates drew the correct outer shape but this was not always to the correct scale.
Key messages

- The focus of this assessment is Graphic Products. Future candidates would benefit from practical activities based on the questions contained in this paper.

General comments

Candidates were required to complete all questions in section A (A1, A2 and A3) and then go on to answer either B4 or B5 from section B. Many candidates chose to answer Question B4 rather than B5. A small number of candidates did not follow the rubric instruction and omitted parts of Question A3 or answered all the questions.

The standard of work was slightly lower than that of the previous year.

There are areas of the syllabus however, in which further improvements are needed. Candidates must be able to draw shapes with arcs touching other arcs/lines. Candidates must be able to draw solid shapes in isometric. The application of thick and thin line technique to solids to give ‘realism’ is an important technique in this subject area.

Comments on specific questions

Question A1

Winner badge

A pictorial image of a badge for ‘winner’ was given in the shape of a shield. The badge was shown with dimensions.

(a) Candidates were asked to complete the outer shape of the shield. The left side lower arc needed to be drawn R160 and the two upper arcs R60.

(b) Candidates were then required to complete the inner shapes. A semi-circle R50 was to be drawn centrally on a base line 110 from the bottom of the shield. By projecting lines either side of the bottom of the semi-circle, a half hexagon could be constructed 100 A/C.

Starting with circle of Ø80, a hexagon 80 A/C could be drawn and the inner shape completed with the equilateral triangle touching the corners of the inner hexagon.

(c) The missing letters (N and R) needed to be drawn to the same font shape and size inline and correctly positioned in the space provided.

Question A2

Trophy

Candidates were asked to assemble a trophy from four given shapes. The assembled trophy was to be drawn in isometric to a scale of 1:2.
Most candidates drew the two bases correctly assembled and centred upon each other. The triangular part 60 wide at the base needed to be shown centrally on the upper base and 160 tall. The pentagon shape proved to be particularly difficult unless the candidate had ‘crated’ both this shape and the triangular shape. The thickness was generally shown 20 mm

Question A3

Making a stencil using CAD and CAM

Not all candidates attempted all parts of this compulsory question.

Candidates were asked to explain how CAD and CAM could be used to design and make the stencil for painting the letter 1. The question required the candidates to refer to the drawing of the shape using CAD, the selection of suitable material for the stencil (Card, thin plastic) and the use of a CAD machine (laser cutter, cutter plotter, STIKA, CAMM1 etc.) to cut out the stencil.

Question B4

This question was attempted by many candidates. Overall, candidates gained a wide range of marks for their answers.

(a) Candidates were asked to complete the planometric view of the podium to a scale of 1:20. The final drawing had to show three steps 30 wide, the middle step 30 high and five step top lines 40 long from the front face of the podium. The backboard was to be drawn 60 high above each step showing a board thickness of 5 mm.

(b) This part of the question asked the candidates to apply thick and thin line technique to the winner’s cup. The principle is that where only one edge is seen producing the corner, a thick line is applied. All edges where two sides are seen producing the corner are left as thin lines.

(c) The base for the winner’s cup was given in isometric. The candidates were asked to draw the base in two-point perspective on the VP’s given. Many candidates realised that the base was a square making each side a mirror image. Not all candidates projected their edge lines to VP1 and VP2.

Question B5

Trophy cabinet

This question was attempted by a slightly smaller number of candidates.

Overall, candidates gained a wide range of marks for their answers.

A pictorial view and a plan and part side view in orthographic projection was given of a Trophy cabinet along with all the relevant dimensions.

(a) Many candidates attempted the completion of the two views of the cabinet. The source material showed a dimensioned pictorial view of the assembled cabinet and a completed plan. By projection, candidates could complete the side view and the front view. It was important that the candidate projected the given sizes correctly as the distance between the shelves could have a cumulative error affecting the overall size.

(b) A pictorial view of two glass doors was given. Candidates were required to render the doors so that they looked like curved glass. Shading that indicated a curve was needed in the convention for glass.

(c) Candidates were asked to complete the sectional view of the handle when fitted into the hole in the glass door. An exploded view of the arrangement was given, so that candidates would recognise the position of washers and the nut.

(i) The handle was to be drawn to the given size and have its body hatched to indicate a section (this is the only part that is hatched, as the other components are left open).
(ii) The felt washer needed to be drawn 3 thick and 54O/D with the inner hole in line with the existing hole in the glass.

(iii) The metal washer needed to be drawn 3 thick and 36O/D with the inner hole in line with the existing hole in the glass. Depending on the orientation of the nut, this was to be drawn $\frac{30}{35}$ wide and 15 thick.
DESIGN AND TECHNOLOGY

Key messages

• The focus of this assessment is Graphic Products. Future candidates would benefit from practical activities based on the questions contained in this paper.

General comments

Candidates were required to complete all questions in Section A (A1, A2 and A3) and then go on to answer either B4 or B5 from Section B. An equal number of candidates chose to answer Question B4 and B5. A small number of candidates did not follow the rubric instruction and answered all the questions.

The standard of work was slightly lower than that of the previous year.

There are areas of the syllabus however, in which further improvements are needed. Candidates must be able to draw simple solid objects in Orthographic projection and to scale. With the increasing use of computers, candidates need to know the advantages of CAD and CAM. The drawing of shapes in isometric projection is also an area that needs further improvement.

Comments on specific questions

Question A1

Exit sign

A concept drawing of an exit sign was given with relevant dimensions. The apex of the head of the arrow and the vee of the tail was given as starting points. Many candidates drew their solution on the isometric axis.

(a) Candidates could have improved on their responses as the given sizes were not always used and consequently the angles to the tail and the shape of the arrowhead were not always accurate.

(b) Some candidates omitted the thickness of the arrow, visible on all the top edges.

Question A2

This question asked the candidate to complete the lettering of the word EXIT by adding the X and the T to the sign. The letters had been given on a grid. The grid spacing was intended to help the candidate draw to the correct size and projection.

Question A3

Photos not allowed sign

Not all candidates attempted all parts of this compulsory question.

(a) (i) The outer border of the sign needed to be a regular Octagon of 260A/F. The drawing of the sign was required to be half size. Candidates who drew a 130 × 130 square on the given centre lines, and then used the half diagonals to determine the corners of the Octagon achieved full marks. A concentric circle R55 and a diagonal bar, 15 wide and at 45° completed the outer of the prohibition sign.
(ii) To complete the camera shape, a rectangle of 70×46 was required to be drawn. The lens of the camera was represented by concentric circles of R20 and R17. The top of the camera needed to be completed by extending the two top lines until they met the diagonal bar with a small return angle at the end.

(b) The stimulus for this part of the question showed graphical images of how the prohibition sign was constructed from two parts. Candidates were asked to design a second backboard prohibiting food and drink in a similar style to the example given. Correct answers showed an image of food and drink in silhouette (no shading) and without a cross bar. The cross bar already existing in Part A.

Question B4

Litter Bin

This question was derived from an actual ‘Graphic Product’ made as a concept model.

Overall, candidates gained a wide range of marks for their answers.

(a) Candidates were asked to complete the orthographic views of the litter bin by drawing the side and end views. The outer shape of the plan view was given. Candidates who projected the edges from the plan to the side and end view achieved a better result.

The side view was to be drawn 90 high with a point 20 on top. The cut-out on this view was to be on the Left-Hand side and 20 high, a distance of 10 from the top.

The front view needed to be drawn showing three sides and to the same height of the side view. The cut-out in this view would extend to half-way across the two side faces.

The top in the plan view needed to have diagonal lines from each corner of the hexagon to show the 6 facets of the top.

(b) A part completed view of the inner steel liner of the litter bin was given. Candidates were required to complete the pictorial view by adding the top ellipse. Some candidates drew only half the ellipse.

Where a Trammel is used for constructing an Ellipse, this must be attached or drawn adjacent to enable marks for construction to be awarded.

(c) (i) Candidates were asked to State two advantages of using CAD to produce the image. Full statements were required for full marks.

(ii) A self-adhesive sticker was to be made of the given image. Candidates were asked to name one suitable CAM machine for making the sticker.

(iii) This part of the question asked candidates for the maximum size of the sticker that could be used in the space available. From the original pictorial view, the maximum size possible is 600×250.

Question B5

Card leaflet holder

This question was also derived from a real ‘Product’.

Overall, candidates gained a wide range of marks for their answers.

(a) Candidates were required to compete the development (net) of a leaflet holder to a scale of 1:2. The outline of the right-hand side and some fold lines were given. Candidates were to add the backboard 100×55, the left side 35 wide and with the correct slope and top radius. The base 55×35 with flaps both sides and to the bottom. All fold lines added were to be to the correct convention.

(b) This part of the question required candidates to complete process boxes to show the tools or equipment they would use to carry out the three given processes.
(c) (i) Suitable adhesives for joining the development (net) include:

PVA, cool melt glue, hot glue, pattex, double sided tape, Gorilla glue etc.

(ii) A die cutter can cut multiples in one cut. Each net is exactly the same.

(d) The relevant shapes of the component parts were to be drawn to a scale of 1:3 in the required boxes. Many candidates drew the correct outer shape but this was not always to the correct scale.
DESIGN AND TECHNOLOGY

Key messages

• Candidates need to read the questions carefully before attempting to answer. Candidates should try to focus on the key elements of each question. The marks allocation given to each question and the space provided to answer the question provides candidates with a clear indication of what is required.

• Candidates need to improve their knowledge and understanding of the practical processes required to ‘work’ the resistant materials, wood, metal and plastic. Currently many candidates name tools or describe processes that are totally unsuitable for specific materials.

• Candidates need to improve their communication skills. They must try to provide clearly drawn sketches when attempting questions that begin with the statement: *Use sketches and notes to*…. In addition, notes should enhance and make clearer what they have drawn.

• In order to achieve good marks for **Section A**, candidates need to develop a wide knowledge and understanding of materials, tools and processes used when working with wood, metal and plastic.

General comments

Section A

Many candidates lacked the all-round knowledge and understanding required to answer all questions in this section.

Section B

This section always has a number of questions with large mark allocations requiring a combination of clear and accurate sketches supported by detailed written notes. The Key messages above are particularly relevant.

Comments on specific questions

Section A

Question 1

The majority of candidates described at least one workshop process. Some candidates needed to improve their knowledge for this question as they were unable to state a specific process when either ear defenders or safety glasses must be worn. There were many unclear answers such as ‘drilling’ or ‘sanding’.

Question 2

Candidates needed to improve their knowledge and understanding for this question as some referred to filing wood instead of metal. Many candidates could not recognise the purpose of the different methods of filing: cross filing to remove metal quickly and draw filing used when finishing metal.

Question 3

There were some very good exploded drawings from only a minority of candidates. Candidates needed to improve their knowledge and understanding for this question as there were many variations of the stopped housing; ranging from a through housing to some that were not fully clear.
Question 4

(a) Many candidates gave advantages of using MDF rather than hardwood for the mould. The most common being that it would be more stable, it could provide a smoother surface and that there would be no grain markings.

(b) Many candidates described at least one requirement of the vacuum forming mould; the most common being the draft angle and radiused corners/edges. Some answers referred to air holes that were not directly related to the actual mould.

Question 5

(a) Candidates needed to improve their understanding for this question as many did not recognise that the body of ‘Drill A’ was made from aluminium (as stated in the question) and named a process suited to plastic. Die casting was the only correct answer.

(b) Most candidates answered this question correctly with reference to the drill being portable or not needing mains supply.

Question 6

Many candidates realised that the sides of the holder could be eased outwards to allow the kitchen roll to go in or out of the holder and then return to its original state. Some candidates referred to acrylic being able to be heated and bent but this information was not relevant for this question.

Question 7

There were some very good ‘improvements’ shown in the answers to this question. Many candidates focused on the fact that the pencil could slide and showed smaller holes or ‘dents’ into which the end of the pencil would sit. Other improvements included an additional base or compartment for other items to be stored. Some candidates needed to improve on the quality of their sketches.

Question 8

(a) Candidates needed to improve on their knowledge for this question as many could not show the short grain on the drawing of the garden tool rack.

(b) Some candidates needed to improve on their knowledge for this question. Only a few referred to short grain appearing in solid woods because they have a natural grain structure. Some candidates did understand that short grain was not a problem in many manufactured boards as they had no grain structure.

Question 9

Candidates needed to improve their knowledge and understanding for this question. Many candidates drilled a 20 mm diameter hole in the strip to accommodate the tube but did not realise that this was not possible as the strip was only 20 mm wide. Some tapped the tube and the hole or welded or drilled into the wall of the tube. The best answers showed the use of plugs or lugs. Candidates needed to read the question carefully as it stated that the tube and strip should be capable of being taken apart.

Question 10

(a) Candidates needed to read the question carefully as many described checks that would be carried out as an overall evaluation rather than a quality check carried out during manufacture. The most common correct checks included the dimensions, angles of the various parts and the holes in the correct position.

(b) Most candidates gained a mark for describing how a visual check would be carried out to examine the surface finish of the plastic bracket, in addition to some of the checks carried out for the softwood bracket.
Section B

Question 11

(a) (i) Candidates needed to improve their knowledge for this question. The best reasons for using beech to make children’s toys is because it is a tough, hardwearing wood that is close-grained which does not split easily. Many candidates gave incorrect answers such as strong, cheap, durable or lightweight.

(ii) Candidates needed to improve their knowledge for this question. Only a minority of candidates could name three marking out tools that could be used to mark out on beech. The most common correctly named tools include a steel rule, try square and marking or mortise gauges. Many candidates named metalworking tools and a variety of marker pens that were inappropriate.

(iii) Candidates needed to improve their understanding for this question. Some candidates drilled a hole for the slot and then described how a coping saw blade would be inserted through the hole to finish cutting the slot, clearly not realising that the depth of the slot was only 10 mm and not all the way through the base. There were some very good answers using stopped drilled holes and the use of a chisel and a mallet to remove the waste.

(b) (i) Many candidates named a non-ferrous metal such as aluminium, copper or brass for the rod. Candidates needed to improve their knowledge for this question as some could not name a non-ferrous metal.

(ii) Many candidates realised that a non-ferrous metal would not rust or corrode.

(c) Many candidates started with a length of 40 mm diameter dowel and cut pieces 15 mm long or used a hole saw to produce a disc from a flat piece of wood. Very few answers showed the best method, that of between-centres turning on a woodturning lathe. It is important that candidates communicate their ideas clearly and add technically accurate notes when describing the tools and equipment they would use.

(d) Many candidates gave advantages that the injection moulding method of producing plastic discs rather than wooden ones would be easier and/or cheaper. Answers such as these do not receive any marks unless they are qualified, for example, ‘cheaper if mass-produced once the cost of the initial tooling has been considered’. Many correctly stated that injection moulding was repetitively accurate.

(e) Most candidates gained some marks for showing how the collar could be constructed from the length of beech. The most common correct methods involved the use of butt, finger and mitre joints.

The question asked candidates to ‘Name all the tools and equipment used to construct the collar’.

Many candidates did not address this part of the question in their answers.

(f) Some candidates showed a clear understanding of CAD/CAM and achieved maximum marks. It would benefit candidates to have first-hand experience of CAD/CAM processes.

Question 12

(a) There were some good answers to this question with candidates showing housing joints, mortise and tenon and screwing from beneath the base piece. Some candidates needed to improve on the quality of their sketches and notes as poor quality sketches and lack of technical detail meant that maximum marks could not be awarded.

(b) (i) Many candidates recognised that some form of nut and bolt or screw was required to join the arms of the lamp together and gained some credit for this. Some candidates needed to improve on the quality of their sketches and notes as the technical accuracy of the drawings added to the Figure were varied and some candidates did not address the final part of the question: ‘Add two important sizes to the fitting’ and could not be awarded full marks.
(ii) Many candidates gave at least one benefit of chrome plating; the most common correct benefits being its resistance to corroding and to enhance appearance.

(c) (i) Candidates needed to improve their understanding for this question as only some understood that 3mm thick plywood is very thin material and it would not be practical to make the shade from solid wood of the same thickness due to the nature of the grain structure.

(ii) Candidates needed to improve their knowledge for this question. To help candidates, the question stated, ‘Consider carefully that the veneered plywood is only 3 mm thick’. This should have alerted candidates to recognise that traditional joining techniques would not be possible. The vast majority of candidates showed methods of joining such as nailing which would not be practical. The best answers employed thin corner blocks or strips glued in position to reinforce the corners.

(d) Many candidates gave at least one correct property of brass for the lamp shade; the most common being its attractive appearance, an ability to be bent to shape and that it could be easily joined.

(e) Candidates needed to address the four specific bullet points given in the question to focus their answers. The 8 marks were divided between the four processes: cutting, bending, soldering and cleaning/finishing giving candidates the opportunity to demonstrate knowledge of some or all of the four. To gain higher marks, candidates needed to name the appropriate tools and equipment identified to carry out specific processes.

Question 13

(a) (i) and (ii) Most candidates named a suitable manufactured board for the table top and a suitable softwood for the legs and rails.

(b) The majority of candidates described benefits for covering the table top with melamine sheet. The most common correct answers described its attractive appearance, resistance to moisture/stains and its smooth surface that could be easily cleaned.

(c) (i) Most candidates explained that making the table adjustable would allow children of different ages/heights to use it without replacing it.

(ii) Some candidates did not provide detailed descriptions but labelled the Figure showing the extrusion moulding machine. Many candidates did demonstrate a good understanding of the process.

(iii) Many candidates gained marks for showing how the table could be set at three different heights. This was only a partial solution to the question which required candidates to show how each position could be locked. Many answers showed pegs or pins or dowels without a method of securing them in place.

(d) Candidates needed to improve their knowledge for this question. The majority of candidates did not understand the benefit to the manufacturer of using the same size section of softwood. Many thought that it allowed for bulk buying. A minority of answers correctly explained that the benefit was that it meant quicker production time since there would be less time changing over and setting up machines.

(e) (i) The question referred to the two rails at Joint A. Many candidates sketched a different joint. Some only used one screw, often with few if any details. Some used knockdown fittings. There were some very good answers showing the two rails at A in the correct orientation with details of length, gauge, type of head or spacing of the screws used.

(ii) As with part (e)(i), many candidates did not answer the question as required. Instead of showing dowels joining the table top to the rails, some candidates showed dowels positioned in the end grain of the four legs.

(f) The majority of candidates explained that quicker production time meant less costs, lower prices for consumers which, in turn, meant more profit.
The majority of candidates showed a functional improvement to the design of the play table. Some improvements included a lipping to prevent items from falling off, the inclusion of drop-in containers that could be positioned in the table top to store different items and additional shelving.
Key messages

- Candidates need to read the questions carefully before attempting to answer. Candidates should try to focus on the key elements of each question. The marks allocation given to each question and the space provided to answer the question provides candidates with a clear indication of what is required.
- Candidates need to improve their knowledge and understanding of the practical processes required to ‘work’ the resistant materials, wood, metal and plastic. Currently many candidates name tools or describe processes that are not suitable for specific materials.
- Candidates need to improve their communication skills. They must try to provide clearly drawn sketches when attempting questions that begin with the statement: *Use sketches and notes to...* In addition, notes should enhance and make clearer what they have drawn.
- In order to achieve good marks for Section A, candidates need to develop a wide knowledge and understanding of materials, tools and processes used when working with wood, metal and plastic.

General comments

Section A

Many candidates needed to further develop the all-round knowledge and understanding required to answer all questions in this section.

Section B

This section always has a number of questions with large mark allocations requiring a combination of clear and accurate sketches supported by detailed written notes. The Key messages above are particularly relevant.

Comments on specific questions

Section A

Question 1

The majority of candidates described at least one specification point for the pedal bin. The best answers included being easy to clean, the lid closing automatically when the pedal is released and the size and durability of the pedal.

Question 2

Most candidates were able to state at least one of the manufacturing processes; laminating or steam bending for the wooden chair legs being the most common correct answer. Candidates needed to improve their knowledge for this question as only the minority of candidates named all three correctly.

Question 3

(a) The reason for using a marking knife was to cut through the veneer in order to prevent the fibres from splitting. The majority of answers stated that lines marked with a knife rather than a pencil were more visible, or that they were more permanent and did not get rubbed off.
The majority of candidates understood the purpose of the 10 mm waste. The best answers referred to the need to leave a small amount of wood that could be removed later to achieve the required length. Other correct answers related to increased accuracy and the avoidance of errors.

Question 4

Some candidates needed to improve their knowledge for this question. Candidates should ‘show knowledge of available market forms, types and sizes’. Very few candidates could provide the names of the three standard metal sections. There were many variations given by candidates that could not be awarded marks.

Question 5

The majority of candidates provided a recognised drawing of a finger joint. There were many excellent drawings showing an odd number of ‘fingers’ and end grain which emphasised the nature of the construction. Candidates were able to gain one or two marks for partially correct answers.

Question 6

The majority of candidates named two composite materials.

Question 7

Candidates needed to improve their knowledge for this question as very few could name the two centre lathe processes. In terms of ‘shaping’ metal, knowledge of at least basic operations carried out using the centre lathe is important.

Question 8

(a) Some candidates needed to improve their knowledge for this question. Many candidates named a sash cramp correctly although some did confuse this with a ‘G’ cramp and other variations which were not correct.

(b) The majority of candidates recognised that the purpose of the scrap wood was to prevent damage to the chopping board and to provide more even pressure along its length.

Question 9

There were many good properties of stainless steel given. The most common properties included its resistance to corrosion, attractive appearance and easy to clean. Some candidates needed to improve their understanding for this question as there were many misconceptions: stainless steel is not lightweight or easy to bend, and a high melting point was not relevant to the use of stainless steel for a toast rack.

Question 10

To answer this question successfully depended to a large extent on an ability to draw ideas clearly. There were many good, practical solutions. The best design solutions concentrated on relatively ‘close-up’ drawings of some form of hook and eye, or two interlocking pieces of metal or plastic. Many candidates drew views of the complete chair which made it difficult to understand the ‘interlocking’ details. Added written notes are valuable and can help to explain ideas.

Section B

Question 11

(a)(i) and (ii) The vast majority of candidates were able to name a suitable manufactured board and non-ferrous metal for the clock shape. The most common materials were MDF and plywood and aluminium and brass respectively.

(b)(i) Many candidates understood that it was necessary to clamp the board down to prevent it from snagging and spinning (the possibility of personal injury) and to ensure an accurate hole was drilled.
The techniques involved in cutting out the shape and smoothing the edges are very basic: three specific processes: saw, file and glasspaper. While some candidates did achieve maximum marks for clearly presented sketches and notes using appropriate tools, many candidates gained only one or two marks for this question. Often incorrectly named tools were given and many candidates went straight from a saw to glasspaper without the use of a file. Some candidates used a tenon saw to cut out the curved shape.

Many candidates provided accurate details showing variations of a mortise and tenon joint held together permanently with an adhesive, often PVA. Some candidates needed to improve their understanding for this question as they did not recognise that the manufactured board was only 5 mm thick making it impractical for it to be nailed, screwed or dowelled.

Many candidates understood that applying paint by means of spraying resulted in a more even coat of paint, free from brush strokes and done more quickly than by hand.

Candidates needed to develop their knowledge for this question. There were three items to address when making the legs from non-ferrous metal and joining them permanently to the clock shape: cutting the metal to shape, bending the legs and then joining them.

The techniques shown and the tools used needed to be appropriate. For example, it would be very difficult to cut 1.5 mm thick non-ferrous metal using a hacksaw; a more successful method would be to use a guillotine or tin snips.

When bending to shape some candidates used a line bender used to soften plastic while others heated the metal using a blowtorch. The non-ferrous metal required only the use of a former and vice and a mallet. Heat was not needed.

Many candidates used welding to join the metal, which was not appropriate. Some candidates used nuts and bolts which would not provide a permanent joint. The best answers soldered the joint or used rivets or epoxy resin adhesive.

Many candidates gained at least one mark for stating that self-finishing meant that no finish is applied to the metal. For a second mark candidates needed to add that no ‘extra’ finish was required or that the surface could be buffed and polished or that the material had properties that meant it did not require an additional finish.

Candidates needed to develop their knowledge and understanding of CAD/CAM. The best answers gave some details relating to the the use of software to design the numbers, the design being transferred to a named CNC machine and the setting up of material and tool parameters.

There were some good answers describing ways by which designers make products appealing and exciting for young children: the most common involving texture, interaction, sound and lights. Some candidates stated shape and colour that were provided in the question.

Question 12

There were many good answers giving sound reasons for using acrylic for the storage unit. The most common included an ability to be bent to shape easily, attractive appearance and inherent colour.

Many candidates achieved at least two marks for this question. To cut the slots the following stages were necessary: drill a hole into which the blade of a coping or scroll saw could be inserted, saw out the majority of the waste, remove the waste up to the line or edge of the slot and finish using wet and dry (silicon carbide) paper and/or polishing mop and compound.

Some candidates needed to improve their knowledge and understanding for this question as they did not drill access holes for a saw. Some used a jig saw on acrylic, others a tenon saw or a very sharp knife to cut out the slots. Sand or glass paper was often used instead of wet and dry. Some used a laser cutter even though the question did state ‘cut out by hand’.

Candidates needed to improve their knowledge and understanding of the basic operations involved in producing the slots by means of a CNC machine. The best answers included the following details: a named CNC machine, for example laser cutter, miller, router, engraver, the design
drawing sent/transferred to a CNC machine, the setting up of the acrylic work piece and the setting of machine parameters.

(d) Most candidates showed how the acrylic could be bent using a strip heater or line bender and the use of a former to achieve the required shape. Many candidates did not achieve the third mark because they omitted to describe how the shape would be retained while the acrylic cooled.

(e) (i) Most candidates gained one mark for showing the acrylic strip clamped using a ‘G’ cramp. For a second mark some sacrificial material should have been used to distribute pressure evenly and protect the surface of the acrylic.

(ii) Few candidates mentioned that acrylic cement would be an irritant to the skin. Most stated that gloves would be used to protect the hands. However, a significant number did state that the reason for wearing a face mask was to protect from toxic fumes.

(f) Candidates needed to improve their knowledge and understanding for this question about laminating veneers with only a minority of candidates demonstrating any practical knowledge of laminating. The best answers showed the five layers glued together, the use of male and female formers and some form of clamping. Some candidates used a single former in conjunction with a vacuum bag.

(g) The majority of candidates described an evaluation whereby the items would be placed in the storage unit and their accessibility tested or by comparing the final product against the original specification. Other excellent methods included asking the client’s opinion or giving out a questionnaire and analysing the feedback.

(h) Most candidates understood that with developments in technology items such as a tablet, phone or remote control were household items that needed to be stored carefully and accessibly.

Question 13

(a) Most candidates achieved at least three or four marks for showing how the shape could be marked out and cut using a tenon saw, scroll or band saw. The curved edge could be shaped on a sander or by a combination of planing and filing. Some candidates had an over-dependence on the use of glasspaper. Technical accuracy, including correctly named tools and equipment was also rewarded.

(b) The majority of candidates gave two features of the ride-on toy that made it suitable for use by young children. Common correct answers included the stability of having four wheels, the back support to the seat and the rounded edges and corners.

(c) (i) The majority of candidates thought that turning the wood without removing the corners would result in damage to the lathe rather than to the wood.

(ii) Candidates needed to improve their knowledge for this question in order to name woodturning tools or items of equipment used to make the wheels on a lathe. Glasspaper, more commonly named ‘sandpaper’ was the main correct answer.

(iii) Candidates needed to improve their knowledge for this question as they did not understand why plywood would be a better material than hardwood for the wheels. Common misconceptions about plywood included: easier to work, lighter in weight and cheaper. The few best answers focused on the stability of plywood and its construction that makes it less likely to split compared to hardwood which has a grain structure.

(d) (i) There were some excellent jigs designed by only a minority of candidates. Some candidates needed to improve their knowledge for this question as they did not understand why plywood would be a better material than hardwood for the wheels. Common misconceptions about plywood included: easier to work, lighter in weight and cheaper. The few best answers focused on the stability of plywood and its construction that makes it less likely to split compared to hardwood which has a grain structure.

(ii) There were some excellent jigs designed by only a minority of candidates. Some candidates needed to improve their knowledge for this question as they did not understand why plywood would be a better material than hardwood for the wheels. Common misconceptions about plywood included: easier to work, lighter in weight and cheaper. The few best answers focused on the stability of plywood and its construction that makes it less likely to split compared to hardwood which has a grain structure.

(iii) There were some excellent jigs designed by only a minority of candidates. Some candidates needed to improve their knowledge for this question as they did not understand why plywood would be a better material than hardwood for the wheels. Common misconceptions about plywood included: easier to work, lighter in weight and cheaper. The few best answers focused on the stability of plywood and its construction that makes it less likely to split compared to hardwood which has a grain structure.

(iv) There were some excellent jigs designed by only a minority of candidates. Some candidates needed to improve their knowledge for this question as they did not understand why plywood would be a better material than hardwood for the wheels. Common misconceptions about plywood included: easier to work, lighter in weight and cheaper. The few best answers focused on the stability of plywood and its construction that makes it less likely to split compared to hardwood which has a grain structure.

A second type of jig involved the use of a ‘cradle’ into which the whole of part B would ‘sit’ on the drilling machine table. With this design wood-based materials were acceptable.
(ii) Candidates needed to improve their knowledge for this question. Fitting a wheel onto an axle and allowing it to rotate required three features: a method of free rotation, a method of retaining the wheel on the axle and the use of a washer to prevent the wheel from rubbing against the side of the ride-on toy.

Some candidates provided rotation by drilling a hole in the wheel slightly larger than the 8 mm diameter axle and retained the wheel on the axle by means of some sort of ‘stopper’ or cap fitted over the end of the axle. Very often the quality of sketches did not show the details clearly enough to gain credit.

(e) (i) The majority of candidates named injection or blow moulding as the process that could produce the plastic wheels.

(ii) The majority of candidates named welding, brazing or soldering as a method of joining lengths of steel tube permanently.

(iii) Most candidates named paint correctly as a finish for the steel frame but found it more difficult to provide a second suitable finish. Alternatives included electroplated and dip-coated plastic finishes.
Key messages

- Candidates need to read the questions carefully before attempting to answer. Candidates should try to focus on the key elements of each question. The marks allocation given to each question and the space provided to answer the question provides candidates with a clear indication of what is required.
- Candidates need to improve their knowledge and understanding of the practical processes required to ‘work’ the resistant materials, wood, metal and plastic. Currently many candidates name tools or describe processes that are not suitable for specific materials.
- Candidates need to improve their communication skills. They must try to provide clearly drawn sketches when attempting questions that begin with the statement: Use sketches and notes to…. In addition, notes should enhance and make clearer what they have drawn.
- In order to achieve good marks for Section A, candidates need to develop a wide knowledge and understanding of materials, tools and processes used when working with wood, metal and plastic.

General comments

Section A

Many candidates lacked the all-round knowledge and understanding required to answer all questions in this section.

Section B

This section always has a number of questions with large mark allocations requiring a combination of clear and accurate sketches supported by detailed written notes. The Key messages above are particularly relevant.

Comments on specific questions

Section A

Question 1

The majority of candidates described at least one workshop process. Some candidates needed to improve their knowledge for this question as they were unable to state a specific process when either ear defenders or safety glasses must be worn. There were many unclear answers such as ‘drilling’ or ‘sanding’.

Question 2

Candidates needed to improve their knowledge and understanding for this question as some referred to filing wood instead of metal. Many candidates could not recognise the purpose of the different methods of filing: cross filing to remove metal quickly and draw filing used when finishing metal.

Question 3

There were some very good exploded drawings from only a minority of candidates. Candidates needed to improve their knowledge and understanding for this question as there were many variations of the stopped housing; ranging from a through housing to some that were not fully clear.
Question 4

(a) Many candidates gave advantages of using MDF rather than hardwood for the mould. The most common being that it would be more stable, it could provide a smoother surface and that there would be no grain markings.

(b) Many candidates described at least one requirement of the vacuum forming mould; the most common being the draft angle and radiused corners/edges. Some answers referred to air holes that were not directly related to the actual mould.

Question 5

(a) Candidates needed to improve their understanding for this question as many did not recognise that the body of ‘Drill A’ was made from aluminium (as stated in the question) and named a process suited to plastic. Die casting was the only correct answer.

(b) Most candidates answered this question correctly with reference to the drill being portable or not needing mains supply.

Question 6

Many candidates realised that the sides of the holder could be eased outwards to allow the kitchen roll to go in or out of the holder and then return to its original state. Some candidates referred to acrylic being able to be heated and bent but this information was not relevant for this question.

Question 7

There were some very good ‘improvements’ shown in the answers to this question. Many candidates focused on the fact that the pencil could slide and showed smaller holes or ‘dents’ into which the end of the pencil would sit. Other improvements included an additional base or compartment for other items to be stored. Some candidates needed to improve on the quality of their sketches.

Question 8

(a) Candidates needed to improve on their knowledge for this question as many could not show the short grain on the drawing of the garden tool rack.

(b) Some candidates needed to improve on their knowledge for this question. Only a few referred to short grain appearing in solid woods because they have a natural grain structure. Some candidates did understand that short grain was not a problem in many manufactured boards as they had no grain structure.

Question 9

Candidates needed to improve their knowledge and understanding for this question. Many candidates drilled a 20 mm diameter hole in the strip to accommodate the tube but did not realise that this was not possible as the strip was only 20 mm wide. Some tapped the tube and the hole or welded or drilled into the wall of the tube. The best answers showed the use of plugs or lugs. Candidates needed to read the question carefully as it stated that the tube and strip should be capable of being taken apart.

Question 10

(a) Candidates needed to read the question carefully as many described checks that would be carried out as an overall evaluation rather than a quality check carried out during manufacture. The most common correct checks included the dimensions, angles of the various parts and the holes in the correct position.

(b) Most candidates gained a mark for describing how a visual check would be carried out to examine the surface finish of the plastic bracket, in addition to some of the checks carried out for the softwood bracket.
Section B

Question 11

(a) (i) Candidates needed to improve their knowledge and understanding for this question. The best reasons for using beech to make children’s toys is because it is a tough, hardwearing wood that is close-grained which does not split easily. Many candidates gave incorrect answers such as strong, cheap, durable or lightweight.

(ii) Candidates needed to improve their knowledge for this question. Only a minority of candidates could name three marking out tools that could be used to mark out on beech. The most common correctly named tools include a steel rule, try square and marking or mortise gauges. Many candidates named metalworking tools and a variety of marker pens that were inappropriate.

(iii) Candidates needed to improve their understanding for this question. Some candidates drilled a hole for the slot and then described how a coping saw blade would be inserted through the hole to finish cutting the slot, clearly not realising that the depth of the slot was only 10 mm and not all the way through the base. There were some very good answers using stopped drilled holes and the use of a chisel and a mallet to remove the waste.

(b) (i) Many candidates named a non-ferrous metal such as aluminium, copper or brass for the rod.

Candidates needed to improve their knowledge for this question as some could not name a non-ferrous metal.

(ii) Many candidates realised that a non-ferrous metal would not rust or corrode.

(c) Many candidates started with a length of 40 mm diameter dowel and cut pieces 15 mm long or used a hole saw to produce a disc from a flat piece of wood. Very few answers showed the best method, that of between-centres turning on a woodturning lathe. It is important that candidates communicate their ideas clearly and add technically accurate notes when describing the tools and equipment they would use.

(d) Many candidates gave advantages that the injection moulding method of producing plastic discs rather than wooden ones would be easier and/or cheaper. Answers such as these do not receive any marks unless they are qualified, for example, ‘cheaper if mass-produced once the cost of the initial tooling has been considered’. Many correctly stated that injection moulding was repetitively accurate.

(e) Most candidates gained some marks for showing how the collar could be constructed from the length of beech. The most common correct methods involved the use of butt, finger and mitre joints.

The question asked candidates to ‘Name all the tools and equipment used to construct the collar’. Many candidates did not address this part of the question in their answers.

(f) Some candidates showed a clear understanding of CAD/CAM and achieved maximum marks. It would benefit candidates to have first-hand experience of CAD/CAM processes.

Question 12

(a) There were some good answers to this question with candidates showing housing joints, mortise and tenon and screwing from beneath the base piece. Some candidates needed to improve on the quality of their sketches and notes as poor quality sketches and lack of technical detail meant that maximum marks could not be awarded.

(b) (i) Many candidates recognised that some form of nut and bolt or screw was required to join the arms of the lamp together and gained some credit for this. Some candidates needed to improve on the quality of their sketches and notes as the technical accuracy of the drawings added to the Figure were varied and some candidates did not address the final part of the question: ‘Add two important sizes to the fitting’ and could not be awarded full marks.
(ii) Many candidates gave at least one benefit of chrome plating; the most common correct benefits being its resistance to corroding and to enhance appearance.

(c) (i) Candidates needed to improve their understanding for this question as only some understood that 3 mm thick plywood is very thin material and it would not be practical to make the shade from solid wood of the same thickness due to the nature of the grain structure.

(ii) Candidates needed to improve their knowledge for this question. To help candidates, the question stated, ‘Consider carefully that the veneered plywood is only 3 mm thick’. This should have alerted candidates to recognise that traditional joining techniques would not be possible. The vast majority of candidates showed methods of joining such as nailing which would not be practical. The best answers employed thin corner blocks or strips glued in position to reinforce the corners.

(d) Many candidates gave at least one correct property of brass for the lamp shade; the most common being its attractive appearance, an ability to be bent to shape and that it could be easily joined.

(e) Candidates needed to address the four specific bullet points given in the question to focus their answers. The 8 marks were divided between the four processes: cutting, bending, soldering and cleaning/finishing giving candidates the opportunity to demonstrate knowledge of some or all of the four. To gain higher marks, candidates needed to name the appropriate tools and equipment identified to carry out specific processes.

Question 13

(a) (i) and (ii) Most candidates named a suitable manufactured board for the table top and a suitable softwood for the legs and rails.

(b) The majority of candidates described benefits for covering the table top with melamine sheet. The most common correct answers described its attractive appearance, resistance to moisture/stains and its smooth surface that could be easily cleaned.

(c) (i) Most candidates explained that making the table adjustable would allow children of different ages/heights to use it without replacing it.

(ii) Some candidates did not provide detailed descriptions but labelled the Figure showing the extrusion moulding machine. Many candidates did demonstrate a good understanding of the process.

(iii) Many candidates gained marks for showing how the table could be set at three different heights. This was only a partial solution to the question which required candidates to show how each position could be locked. Many answers showed pegs or pins or dowels without a method of securing them in place.

(d) Candidates needed to improve their knowledge for this question. The majority of candidates did not understand the benefit to the manufacturer of using the same size section of softwood. Many thought that it allowed for bulk buying. A minority of answers correctly explained that the benefit was that it meant quicker production time since there would be less time changing over and setting up machines.

(e) (i) The question referred to the two rails at Joint A. Many candidates sketched a different joint. Some only used one screw, often with few if any details. Some used knockdown fittings. There were some very good answers showing the two rails at A in the correct orientation with details of length, gauge, type of head or spacing of the screws used.

(ii) As with part (e)(i), many candidates did not answer the question as required. Instead of showing dowels joining the table top to the rails, some candidates showed dowels positioned in the end grain of the four legs.

(f) The majority of candidates explained that quicker production time meant less costs, lower prices for consumers which, in turn, meant more profit.
The majority of candidates showed a functional improvement to the design of the play table. Some improvements included a lipping to prevent items from falling off, the inclusion of drop-in containers that could be positioned in the table top to store different items and additional shelving.
DESIGN AND TECHNOLOGY

Key messages

- Candidates should be reminded that they are required to read all instructions carefully.

- Candidates should be reminded that they are required to answer every question in **Section A** but only one question in **Section B**. There were several instances where either two or three **Section B** questions had been attempted.

- Candidates should be reminded that clear, legible writing and annotation to sketches are vital for an answer to be awarded marks.

- All responses should appear in the space allocated for that response. If there is not enough room the response can be continued on additional sheets attached to the booklet. If additional sheets are used the question and part number must appear clearly next to the response.

- Candidates should be reminded to make a response for each part question that they are answering. If an answer is offered there is a chance that it will gain a mark.

- In questions that require either a single answer or a set number of answers it is important that candidates do not enter additional answers; this will result in the examiner not being able to give credit to a correct response because an incorrect one has also been offered. E.g. tables requiring ticks (✓) or items to be circled to identify the answer should not have more than the required number of ticks or circles.

- If a comparison is required, for example, in a question asking for advantages, the response should reflect this and provide reference to the items being compared.

- In calculation questions units should be applied to the answer wherever it is appropriate. Any working should always be shown as it is possible to gain marks from this even if the final answer is incorrect.

General comments

The questions in **Section A** proved accessible to most candidates with very few instances of questions without any response. Clear answers were seen in the majority of cases and there was evidence that each area of the syllabus had been covered.

In **Section B** the structures question was the most popular; this was followed by the mechanisms and electronics questions. There was a noticeable move towards the mechanisms and electronics questions.

It is important that candidates read each question carefully, noting any important features that appear in bold type. This applies especially to the questions where the number of responses is denoted in bold type. If more than the required number of responses are given there is a danger that the extra responses could be incorrect, resulting in no mark being awarded.

As noted in the key messages there are candidates attempting more than one question in **Section B**. In almost all these cases time would have been better spent concentrating on a single question. Where sketches were required as part of the response, they were generally clear and good use had been made of the available space.
Comments on specific questions

Section A

Question 1

The first two safety symbols shown were generally well known and candidates gained the marks. The symbol for an emergency stop button was in many cases recognised as a start/stop button for a machine, but the link with emergency use was not made.

Question 2

Almost all candidates could name a suitable example of renewable energy and fossil fuel. Some of the answers could have been further developed by giving the full name of the energy type chosen.

Question 3

(a) There was a good response to this question with candidates from across the range giving clear explanations of the reason for a mortise and tenon resisting tensile force better than dowels.

(b) Candidates needed to improve on their knowledge for this question as they needed to show more understanding of shear force and where it would be applied to the joint. Some unclear explanations centred on the wedges and surface area of the tenon rather than on the cross-sectional area, which is the part of the joint resisting shear force.

Question 4

(a) A number of different temporary methods were given, many of which, like adhesive or rivets, were in fact permanent.

(b) The permanent methods were generally well known; the most popular choice being welding.

Question 5

The majority of candidates correctly defined a static load, those who did not gain the mark had frequently defined static correctly, but they also gave a moving load as an example.

Question 6

(a) Uses for the different gears were correctly given by the majority of stronger candidates. Weaker candidates in many cases were not familiar with the type of gear or chose an inappropriate use.

(b) This part was generally well answered with most responses using an idler gear between the rack and the existing spur gear. A few had moved the rack to a position above the spur gear, which would have also had the desired effect.

Question 7

Candidates needed to improve on their knowledge for this question as some drew two gears on the same axle and then did not show that the two gears were locked in place and could not turn relative to each other.

Question 8

(a) Candidates needed to improve on their knowledge for this question. In a number of cases the pin numbers were correct on one side of the IC but reversed on the other. The side with pin one was generally completed correctly.

(b) This part was generally well answered with the majority of candidates recognising the NOR gate and gaining the mark.

(c) In many cases the LED was drawn correctly but connected in reverse bias or without a current limiting resistor.
Section B

Question 9

(a) In order to test the bridge, it would have to be supported on either side leaving a span of 270 mm in the centre, those who showed the supports were credited with a mark. The loading could have either been distributed along the length of the bridge deck or applied as a point load in the centre of the structure. Some candidates needed to improve on their knowledge for this question as they had not stated or drawn the method of applying a load.

(b) (i) The majority of candidates recognised the bridge as a mass structure.

(ii) The majority of candidates correctly identified that the strength of this type of structure comes largely from the weight of material involved in construction of the structure. Marks were lost in some cases because an example was not used in the description.

(iii) The majority of responses recognised that the keystone will lock the arch in position because of its tapered shape.

(iv) Some candidates needed to improve on their knowledge for this question as they did not appreciate the aesthetic qualities of stone when compared to concrete, or its durability.

(v) Knowledge of the properties of concrete were better understood in most cases. The ease of pouring the concrete on site was often mentioned along with the ability to create complex shapes from it.

(c) (i) Candidates needed to improve on their knowledge for this question. Most responses gained at least one mark from identifying that gusset plates were used. The purpose of the wire ties or the visible triangulation was less recognised.

(ii) A high proportion of responses had mentioned the relatively light weight of a wooden construction. The flexibility of wood and the ease of bending it into shape were only mentioned by the stronger candidates.

(iii) Candidates needed to improve on their knowledge for this question as the factors requiring consideration when selecting wood were in most case limited to the defects that can be found; candidates needed to mention the strength or stability of the wood.

(d) This calculation was answered well by the majority of candidates. In most cases the working for the calculation was shown as well as the final answer.

(e) (i) A few errors in substitution were seen, which lost marks, but an accurate answer was given in the majority of cases.

(ii) The nature of the strain was recognised in most cases as being tensile strain.

(iii) In most cases understanding of the term ‘elastic limit’ was clearly understood. Some candidates needed to improve on their knowledge for this question as a few responses showed that candidates had difficulty in putting their understanding into words.

Question 10

(a) (i) Candidates needed to improve on their knowledge for this question as in many cases the lever used was incorrectly identified as class 1 rather than the class 2 which it was, with the load being between the effort and fulcrum.

(ii) With the lever of handle B identification as a class 3 lever was more commonly correct.

(iii) A range of candidates gained the marks for this part. The first mark for describing the rotation of the bucket was generally correct, the second mark for stating that the rotation was clockwise was only identified by stronger candidates.
(iv) Methods of allowing for rotation of the seat were varied though most specified a ball bearing race at the centre. Candidates needed to improve on their response for this question because details of the designs in some cases needed to be clearer and marks for naming components and materials could not be awarded. The available space for sketches was generally used well, allowing details to be seen.

(b)(i) The conversion of motion in the hydraulic jack was answered correctly in most cases. Some candidates needed to improve on their knowledge for this question as they stated that the input motion was rotary.

(ii) The purpose of the release valve in the hydraulic jack was generally identified as allowing the jack to drop to its lowest position. Stronger candidates also noted that it could be used to control the descent speed of the jack.

(iii) The mechanical advantage of the screw jack required the calculation of the circumference of the path traced by the jack handle; this was generally carried out accurately. The second stage where the circumference was divided by the distance raised was also completed by the majority of candidates.

(iv) Candidates needed to improve on their knowledge for this question because reasons for using a ratchet and pawl mechanism were not widely understood. The main reason in this case is that the handle could be operated without having to turn through a full 360º, very useful when space is restricted.

(v) Candidates needed to improve on their knowledge for this question. Some candidates could give two additional uses for a ratchet and pawl mechanism; possibilities included hoist, socket wrench or screwdriver. It is desirable that all candidates encounter practical uses of the major mechanisms.

(vi) Understanding of the advantages of using bearings in a mechanism was good with many candidates gaining both marks.

(c)(i) Sketches in most cases were clear and showed that the distance between threads is the pitch, which will also determine the linear distance moved as a result of rotation.

(ii) In the example of a micrometer a full range of responses correctly gave the pitch as 0.5 mm.

(d) Candidates generally came up with valid reasons for the use of plain bearings in the gear system. The most frequently found related to the low cost or ease of replacement.

Question 11

(a)(i) The LED cathode was in most cases correctly identified as was the emitter on the transistor. Any incorrect responses were confined to the diode.

(ii) Most of the stronger candidates identified the diode as a component that can be used in reverse bias.

(b)(i) Some candidates needed to improve on their knowledge for this question because the reason for the variable resistor was not widely known to the weaker candidates. At the other end of the range responses showed good understanding of the reasons for needing to change the resistance, in particular, to adjust the point at which the signal from the thermistor/VR1 will switch the transistor.

(ii) The calculation of resistance values was completed accurately by all candidates.

(iii) The reaction of a thermistor to increased external heat was accurately stated by almost all candidates.

(iv) The position of the meter dial was accurately marked in most cases though there were some discrepancies in the reading that should appear on the screen.

(c)(i) The reason for mirrored writing was well known to those who had experienced the process of manufacturing a PCB.
(ii) Once again those who had either made a circuit board or soldered components in place were able to clearly describe a practical method of locating the IC correctly.

(iii) This question required analysis of the PCB layout to understand the connections needed. Incorrect responses were in most cases confined to the construction of NOT gates from two of the NOR gates. Correct solutions were seen from the stronger candidates.

(d)(i) The full name for the contact configuration was given by all candidates.

(ii) The power rating calculation was accurately completed by all candidates.

(iii) Incorrect responses in the choice of relay from the given list were generally the result of choosing the wrong contact arrangement.
Key messages

- Candidates should be reminded that they are required to read all instructions carefully.
- Candidates should be reminded that they are required to answer every question in Section A but only one question in Section B. There were several instances where all three Section B questions had been attempted.
- Candidates should be reminded that clear, legible writing and annotation to sketches are vital for an answer to be awarded marks.
- If a question requires sketches and notes for the answer both should be used in the response.
- All responses should appear in the space allocated for that response. If there is not enough room the response can be continued on additional sheets attached to the booklet. If additional sheets are used the question and part number must appear clearly next to the response.
- In questions that require either a single answer or a set number of answers it is important that candidates do not enter additional answers. This will result in the examiner not being able to give credit to a correct response because an incorrect one has also been offered. E.g. tables requiring ticks (✔) or items to be circled to identify the answer should not have more than the required number of ticks or circles.
 Any errors can be corrected by crossing through the ones that are incorrect.
- If a comparison is required, for example, in a question asking for advantages, the response should reflect this and provide reference to the items being compared.
 Explanation should be given in sentences rather than as short notes.
- In calculation questions units should be applied to the answer wherever it is appropriate.
 Any working should always be shown as it is possible to gain marks from this even if the final answer is incorrect.

General comments

The questions in Section A proved accessible to the majority of candidates with very few instances of questions with no response offered. Clear answers were seen in the majority of cases and there was evidence that each area of the syllabus had been covered.

In Section B the structures question was once again the most popular; the number of candidates choosing the electronics question was slightly greater than in 2018.

It is important that candidates read each question carefully before starting their response.

As noted in the key messages there was an increase shown in those attempting all three questions. In almost all these cases time would have been better spent concentrating on a single question. Where sketches were required as part of the response, they were generally clear and good use had been made of the available space.
Comments on specific questions

Section A

Question 1
(a) The majority of candidates were able to name two computer-controlled machines used in manufacturing.
(b) This was generally answered well with a range of benefits for CAM being given. There were a small number of instances where the abbreviation ‘CAM’ had been mistaken for a cam mechanism. Candidates should be reminded that where there are several parts within a single question there will not be a sudden switch of focus within the question.

Question 2
(a) This question was answered well in the majority of cases. Candidates should be reminded that use of a ruler is beneficial where straight lines are being used to join two points.
(b) The majority of candidates made the correct connection to the switch terminals. Those who had not gained full marks had generally made the correct connection to the common terminal and then used the NC terminal.
(c) Candidates needed to improve on their knowledge for this question. The answer should have referred to the motor not being able to run with the door open. In a number of cases the answer referred to the contents of the tumble drier not being allowed to fall out.

Question 3
(a) The majority of candidates recognised the body of the drier as being a shell structure.
(b) Candidates who gained marks for this part had generally used a corrugated approach to make the flat steel more rigid, very few had added depressions in the surface. Some candidates needed to improve on their knowledge for this question as those who were not awarded credit had in many cases shown a piece of steel folded in two to increase the thickness of the steel.

Question 4
This question was well answered, clear practical reasons for using gears were generally given.

Question 5
Some candidates needed to improve on their knowledge for this question as methods of securing a spur gear to a shaft were not known to a number of candidates.

The stronger responses showed keyways or splines as an effective solution, with many being extremely well drawn and annotated. In some cases, a permanent method such as welding was used; this also gained the marks. Candidates who had chosen to use an adhesive did not gain marks.

Question 6
The conversions of motion in the two examples were well known to the majority of candidates. Errors came mainly in the cam and follower with ‘reciprocating’ not being used for the follower.
Question 7

(a) The respective benefits of soldering and the terminal block were generally well known, and the two techniques were recognised as being permanent and temporary electrical joints.

(b) The purpose of plastic covering on the connecting wires was widely identified as electrical insulation. Candidates should be reminded to be specific in their response; just stating ‘insulation’ could be seen as referring to thermal insulation. Those who had referred to the dangers of electrocution were awarded the mark, although this is not a serious possibility in low voltage circuits. Some candidates needed to improve on their knowledge for this question as they had not noted that the insulation could also be used to identify the function of the connection.

Section B

Question 8

(a) (i) This part question was answered well in the majority of cases. Candidates who were not awarded marks had added multiple ticks to the grid. As noted in the Key Messages it is important that any misplaced ticks are crossed through.

(ii) Candidates needed to improve their knowledge for this question as a number of candidates had difficulty in defining a natural defect. Any defect that occurred whilst the tree was growing was allowable. This includes insect attack.

(b) (i) This part question was answered well. Good knowledge of structure types was demonstrated.

(ii) The strengthening methods used in the frame structure were correctly identified in most cases. Some candidates needed to improve on their approach to this type of question as there was sometimes a tendency to write down all the strengthening methods that they know, rather than restricting their response to the methods asked for.

(c) (i) Many excellent answers to this question were seen. Some candidates needed to improve on their knowledge for this question as they were unsure as to the nature of different types of load. Some candidates needed to improve on their approach to this type of question as it asked for examples and a number of candidates did not provide any examples.

(ii) Stronger candidates showed a good understanding of the link between the information provided on the safety label and how the manufacturer had arrived at a safe working load by building in a Factor of Safety.

(iii) Some candidates needed to improve on their knowledge for this question as there were a few difficulties seen in the responses to the calculation. In some cases, the formula used was correct and the working was also correct, but the reactions had been attributed in reverse order, the correct numerical value for R_2 being attributed to R_1. In cases like this only one mark was lost.

(iv) This question required knowledge of the formula used to calculate stress. The very general description offered by a small proportion of candidates was not enough for the marks to be awarded. In most cases the formula was accurately quoted, gaining both marks.

(d) This question was a good example of where sketches and notes were both needed. Tension and compression were generally described accurately but shear and torsion provided more of a challenge. The use of arrows as a symbol of the force direction was a reliable way of picking up the marks.

Question 9

(a) (i) Many candidates attempting this question were able to give a valid advantage for using a vee belt.

(ii) A number of different tensioning methods were seen in the responses with most relying on a spring-loaded idler pulley or jockey wheel to provide some tension to the belt. Sketches in the majority of cases were very clear and detailed.
(b)
(i) The majority of answers seen reflected clear knowledge of how the velocity ratio is calculated in a pulley system.

(ii) Around half of the candidates recognised why there are energy losses in a pulley system. The stronger responses then went on to describe the form of the losses.

(iii) Knowledge of bearing types was generally good, with most choosing to use a ball bearing race.

(c)
(i) Some candidates needed to improve their knowledge for this question. In most cases the position of the fulcrum and effort were correctly identified but the load was frequently shown as being somewhere along the length of the cylinders, in no definite position.

(ii) A number of candidates concluded that the mechanism would not operate if a fixed joint was used. Some candidates needed to further improve their knowledge for this question as they could not clearly describe the reason for the mechanism being unable to operate.

(iii) Many candidates needed to improve their knowledge for this question. In many cases "linear motion" was stated, rather than the reciprocating motion that actually takes place.

(iv) Knowledge of the principle of a crank and slider mechanism was generally good. In a number of cases the sketches could have been further improved to fully describe how the mechanism works.

(d)
(i) The name of the roller follower was generally well known and the majority of candidates answering the question gained the mark.

(ii) A common error with this part was to use the 13.25 mm dimension as the lift caused by the cam without deducting the 10 mm of the base circle radius.

(iii) Some candidates needed to develop their understanding for this question as the 180° of dwell during the rotation of the cam had been ignored, or the given starting position had not been used.

(iv) Some candidates needed to develop their understanding for this question. The offset follower causes the follower to rotate, evening out the wear on the follower. Any understanding of the dual movement of the follower gained the marks.

Question 10

(a)
(i) Some candidates needed to improve their knowledge for this question. The switch and motor symbols used in this part were generally identified correctly. The fuse symbol was frequently mistaken for a resistor.

(ii) The direction of conventional current flow was correctly indicated in most cases.

(iii) Nearly all answers had correctly given ampere or amp as the unit of current.

(b)
(i) A high proportion of answers identified temperature as the physical property being sensed.

(ii) The first part of the description was to note that the voltage is divided by resistors in series, most answers gained the mark for this. The second mark available was for noting that the voltage is divided in the same proportion as the resistor values. This mark was only gained by the stronger candidates.

(iii) This calculation required a straightforward substitution into the given formula. Candidates who got the first part correct generally went on to complete the calculation accurately. It should be noted that not writing down the working for the calculation incurs no penalty for those who get the answer correct. If an incorrect answer is given with no working shown it results in no marks being awarded.

(iv) Some candidates needed to improve their knowledge for this question. In many cases the voltmeter symbol was correctly drawn but it had been connected to the wrong part of the circuit.

(v) There were a number of allowable answers for this part, many candidates realised that tolerance in the resistors used or inaccurate setting of the variable resistor would cause a faulty reading.
(vi) This part required the available voltage to be divided equally. The stronger responses chose a suitable value, greater than 1 kΩ and applied it to both resistors used. The arrangement of the resistors was generally correct, and a connection had been made to the inverting terminal of the Op Amp.

(c) (i) Calculation of the time constant was completed accurately in the majority of cases.

(ii) Most candidates gained the mark for showing a rising voltage. The second mark was for showing the curve flattening out as the capacitor nears full charge; very few marks were awarded for this.

(iii) Many candidates needed to develop their knowledge of the working of a bipolar transistor. There was some evidence that candidates knew the theoretical switching point of the transistor, but few responses went on to mention the current flow in the collector emitter circuit.

(d) Knowledge of the benefits of programmable ICs was evident in many cases and there were a number of valid benefits to choose from.
Key messages

- Candidates should be reminded that they are required to read all instructions carefully.

- Candidates should be reminded that they are required to answer every question in Section A but only one question in Section B. There were several instances where either two or three Section B questions had been attempted.

- Candidates should be reminded that clear, legible writing and annotation to sketches are vital for an answer to be awarded marks.

- All responses should appear in the space allocated for that response. If there is not enough room the response can be continued on additional sheets attached to the booklet. If additional sheets are used the question and part number must appear clearly next to the response.

- Candidates should be reminded to make a response for each part question that they are answering. If an answer is offered there is a chance that it will gain a mark.

- In questions that require either a single answer or a set number of answers it is important that candidates do not enter additional answers; this will result in the examiner not being able to give credit to a correct response because an incorrect one has also been offered. E.g. tables requiring ticks (✓) or items to be circled to identify the answer should not have more than the required number of ticks or circles.

- If a comparison is required, for example, in a question asking for advantages, the response should reflect this and provide reference to the items being compared.

- In calculation questions units should be applied to the answer wherever it is appropriate. Any working should always be shown as it is possible to gain marks from this even if the final answer is incorrect.

General comments

The questions in Section A proved accessible to most candidates with very few instances of questions without any response. Clear answers were seen in the majority of cases and there was evidence that each area of the syllabus had been covered.

In Section B the structures question was the most popular; this was followed by the mechanisms and electronics questions. There was a noticeable move towards the mechanisms and electronics questions.

It is important that candidates read each question carefully, noting any important features that appear in bold type. This applies especially to the questions where the number of responses is denoted in bold type. If more than the required number of responses are given there is a danger that the extra responses could be incorrect, resulting in no mark being awarded.

As noted in the key messages there are candidates attempting more than one question in Section B. In almost all these cases time would have been better spent concentrating on a single question. Where sketches were required as part of the response, they were generally clear and good use had been made of the available space.
Comments on specific questions

Section A

Question 1
The first two safety symbols shown were generally well known and candidates gained the marks. The symbol for an emergency stop button was in many cases recognised as a start/stop button for a machine, but the link with emergency use was not made.

Question 2
Almost all candidates could name a suitable example of renewable energy and fossil fuel. Some of the answers could have been further developed by giving the full name of the energy type chosen.

Question 3
(a) There was a good response to this question with candidates from across the range giving clear explanations of the reason for a mortise and tenon resisting tensile force better than dowels.
(b) Candidates needed to improve on their knowledge for this question as they needed to show more understanding of shear force and where it would be applied to the joint. Some unclear explanations centred on the wedges and surface area of the tenon rather than on the cross-sectional area, which is the part of the joint resisting shear force.

Question 4
(a) A number of different temporary methods were given, many of which, like adhesive or rivets, were in fact permanent.
(b) The permanent methods were generally well known; the most popular choice being welding.

Question 5
The majority of candidates correctly defined a static load, those who did not gain the mark had frequently defined static correctly, but they also gave a moving load as an example.

Question 6
(a) Uses for the different gears were correctly given by the majority of stronger candidates. Weaker candidates in many cases were not familiar with the type of gear or chose an inappropriate use.
(b) This part was generally well answered with most responses using an idler gear between the rack and the existing spur gear. A few had moved the rack to a position above the spur gear, which would have also had the desired effect.

Question 7
Candidates needed to improve on their knowledge for this question as some drew two gears on the same axle and then did not show that the two gears were locked in place and could not turn relative to each other.

Question 8
(a) Candidates needed to improve on their knowledge for this question. In a number of cases the pin numbers were correct on one side of the IC but reversed on the other. The side with pin one was generally completed correctly.
(b) This part was generally well answered with the majority of candidates recognising the NOR gate and gaining the mark.
(c) In many cases the LED was drawn correctly but connected in reverse bias or without a current limiting resistor.
Section B

Question 9

(a) In order to test the bridge, it would have to be supported on either side leaving a span of 270 mm in the centre, those who showed the supports were credited with a mark. The loading could have either been distributed along the length of the bridge deck or applied as a point load in the centre of the structure. Some candidates needed to improve on their knowledge for this question as they had not stated or drawn the method of applying a load.

(b) (i) The majority of candidates recognised the bridge as a mass structure.

(ii) The majority of candidates correctly identified that the strength of this type of structure comes largely from the weight of material involved in construction of the structure. Marks were lost in some cases because an example was not used in the description.

(iii) The majority of responses recognised that the keystone will lock the arch in position because of its tapered shape.

(iv) Some candidates needed to improve on their knowledge for this question as they did not appreciate the aesthetic qualities of stone when compared to concrete, or its durability.

(v) Knowledge of the properties of concrete were better understood in most cases. The ease of pouring the concrete on site was often mentioned along with the ability to create complex shapes from it.

(c) (i) Candidates needed to improve on their knowledge for this question. Most responses gained at least one mark from identifying that gusset plates were used. The purpose of the wire ties or the visible triangulation was less recognised.

(ii) A high proportion of responses had mentioned the relatively light weight of a wooden construction. The flexibility of wood and the ease of bending it into shape were only mentioned by the stronger candidates.

(iii) Candidates needed to improve on their knowledge for this question as the factors requiring consideration when selecting wood were in most case limited to the defects that can be found; candidates needed to mention the strength or stability of the wood.

(d) This calculation was answered well by the majority of candidates. In most cases the working for the calculation was shown as well as the final answer.

(e) (i) A few errors in substitution were seen, which lost marks, but an accurate answer was given in the majority of cases.

(ii) The nature of the strain was recognised in most cases as being tensile strain.

(iii) In most cases understanding of the term ‘elastic limit’ was clearly understood. Some candidates needed to improve on their knowledge for this question as a few responses showed that candidates had difficulty in putting their understanding into words.

Question 10

(a) (i) Candidates needed to improve on their knowledge for this question as in many cases the lever used was incorrectly identified as class 1 rather than the class 2 which it was, with the load being between the effort and fulcrum.

(ii) With the lever of handle B identification as a class 3 lever was more commonly correct.

(iii) A range of candidates gained the marks for this part. The first mark for describing the rotation of the bucket was generally correct, the second mark for stating that the rotation was clockwise was only identified by stronger candidates.
Methods of allowing for rotation of the seat were varied though most specified a ball bearing race at the centre. Candidates needed to improve on their response for this question because details of the designs in some cases needed to be clearer and marks for naming components and materials could not be awarded. The available space for sketches was generally used well, allowing details to be seen.

The conversion of motion in the hydraulic jack was answered correctly in most cases. Some candidates needed to improve on their knowledge for this question as they stated that the input motion was rotary.

The purpose of the release valve in the hydraulic jack was generally identified as allowing the jack to drop to its lowest position. Stronger candidates also noted that it could be used to control the descent speed of the jack.

The mechanical advantage of the screw jack required the calculation of the circumference of the path traced by the jack handle; this was generally carried out accurately. The second stage where the circumference was divided by the distance raised was also completed by the majority of candidates.

Candidates needed to improve on their knowledge for this question because reasons for using a ratchet and pawl mechanism were not widely understood. The main reason in this case is that the handle could be operated without having to turn through a full 360º, very useful when space is restricted.

Candidates needed to improve on their knowledge for this question. Some candidates could give two additional uses for a ratchet and pawl mechanism; possibilities included hoist, socket wrench or screwdriver. It is desirable that all candidates encounter practical uses of the major mechanisms.

Understanding of the advantages of using bearings in a mechanism was good with many candidates gaining both marks.

Sketches in most cases were clear and showed that the distance between threads is the pitch, which will also determine the linear distance moved as a result of rotation.

In the example of a micrometer a full range of responses correctly gave the pitch as 0.5 mm.

Candidates generally came up with valid reasons for the use of plain bearings in the gear system. The most frequently found related to the low cost or ease of replacement.

The LED cathode was in most cases correctly identified as was the emitter on the transistor. Any incorrect responses were confined to the diode.

Most of the stronger candidates identified the diode as a component that can be used in reverse bias.

Some candidates needed to improve on their knowledge for this question because the reason for the variable resistor was not widely known to the weaker candidates. At the other end of the range responses showed good understanding of the reasons for needing to change the resistance, in particular, to adjust the point at which the signal from the thermistor/VR1 will switch the transistor.

The calculation of resistance values was completed accurately by all candidates.

The reaction of a thermistor to increased external heat was accurately stated by almost all candidates.

The position of the meter dial was accurately marked in most cases though there were some discrepancies in the reading that should appear on the screen.

The reason for mirrored writing was well known to those who had experienced the process of manufacturing a PCB.
(ii) Once again those who had either made a circuit board or soldered components in place were able to clearly describe a practical method of locating the IC correctly.

(iii) This question required analysis of the PCB layout to understand the connections needed. Incorrect responses were in most cases confined to the construction of NOT gates from two of the NOR gates. Correct solutions were seen from the stronger candidates.

(d) (i) The full name for the contact configuration was given by all candidates.

(ii) The power rating calculation was accurately completed by all candidates.

(iii) Incorrect responses in the choice of relay from the given list were generally the result of choosing the wrong contact arrangement.
DESIGN AND TECHNOLOGY

Key messages

- Ensure that the problem selected will enable the candidate to access all the assessment criteria. Candidates must create a ‘product’ that can be properly tested and evaluated in the environment it is intended for. Where possible, identify a client or user who can help provide information when researching, comment on design ideas and help to test and evaluate the final product.
- Use a reasonable size font and make full use of each page. Candidates should focus on quality rather than quantity.
- Candidates should be encouraged to explore more innovative and creative design opportunities.

General comments

Work submitted was generally well packaged and folders appropriately bound. Centres are reminded that practical outcomes and three-dimensional prototype models should not be forwarded with the sample for moderation.

Some projects were very innovative, and many candidates produced high quality, functional outcomes.

A concise and detailed folder, making the best use of each page is recommended. Work needs to be structured, focused and presented clearly as additional embellishment carries no marks.

Marks were applied accurately and consistently by the majority of centres. There were occasions where standardisation had been carried out, marks awarded adjusted, and only the total mark changed on the Coursework Assessment Summary Form. If marks are changed, please indicate in the Assessment Criterion where adjustment has occurred.

For new centres, or teachers new to the subject, guidance for assessing coursework and other very useful support for 0445 can be found on the teachers support hub.

https://schoolsupporthub.cambridgeinternational.org

Comments on specific sections

1. Identification of a need or opportunity with a brief analysis leading to a Design Brief

Some centres were generally lenient in awarding marks in this section. Some candidates produced a brief statement of design intention with limited or no reference to the design or user/s needs and were incorrectly awarded marks in the middle and higher mark range. To access the higher mark range, candidates must analyse the need in detail and consider the requirements of possible users.

The design opportunity and design brief tended to be communicated well. Candidates would benefit from looking at the needs and expectations of the selected user group in more detail.

2. Research into the Design Brief resulting in a Specification

Marks awarded for this section were generally in line with Cambridge standards. Some centres tended to be slightly lenient. Research needs to be more focused on the situation chosen and specifications should state the main functions and qualities of the product. Some candidates did not access specific research directly related to their brief. For example, candidates designing storage units should find information about the range and sizes of items to be stored.
Many candidates analyse existing products as part of their research. To access the higher mark range, candidates need to draw out details that will help them when designing. Candidates should highlight the particular design strengths and weaknesses and use this information when generating a specification and when designing. Candidates should make reference to specific ergonomic or anthropometric requirements. Some candidates used existing products as their only source of information in this section and this alone cannot access full marks.

Specifications were mostly clear and justified. To access the higher mark range, candidates need to produce more detailed and specific specifications. By explaining the design criteria in more detail, candidates show a greater understanding and can access a higher level of attainment.

The stronger candidates focused on key, relevant information which helped to support the design. Some candidates needed to make conclusions about the information/data that they collected relevant to the item being designed. This was particularly evident with questionnaires. Candidates should be encouraged to include more personal observation and analysis when researching.

3. **Generation and exploration of Design Ideas**

Some of the design work presented was very good; well-presented, innovative and creative. Many candidates produced a good integration of models with sketched ideas and design possibilities, showing a natural progression of design and development.

Some centres assessed this section slightly leniently. To access the higher mark range, a wide range of different, well-annotated possibilities is required. Ideas should be evaluated on their suitability for further development and should make reference to the specification.

Many candidates produced a range of different design ideas. To access the higher mark range, candidates needed to be more imaginative and creative when designing. Exploring and evaluating each idea in more detail, including material possibilities, aesthetic considerations and experimentation with proportions etc. before going onto the next concept, would enable them to access more marks.

Candidates needed to improve on their evaluation and specification checks as they needed more detail. Candidates must make it clear why ideas had been selected for further development.

4. **Development of Proposed Solution**

Some centres were slightly generous in their awarding of marks for this section. Some candidates had very limited evidence of the development of ideas in their folders.

An increasing number of candidates produced a card model of their chosen idea, but most did not go on to work out the most suitable materials and methods of construction. Many candidates made very good use of three-dimensional modelling and CAD modelling to help to visualise the size, shape and proportions of the design proposal.

Candidates should explain why specific materials, possible joining methods and finishes have been selected for their final solution.

5. **Planning for Production**

Most candidates produced detailed, dimensioned working drawings. CAD is being increasingly used to very good effect in the generation of working drawings although some candidates using 3-D representational CAD drawings did not include dimensional detail.

To achieve the highest mark ranges, drawings should include all details necessary such as key dimensions, additional fixtures used, for example, hinges and screws, and finishes applied.

Most candidates produced a logical sequence of the stages of manufacture, including detailed cutting lists and approximate time allocations in their detailed plan for production. Some flow charts needed more detail such as more about the information required to manufacture the product.
6. **Product Realisation**

Most candidates fully complete the manufacture of a practical outcome and there were many examples of high-quality manufactured products presented.

Many candidates made excellent use of photographic evidence during the key stages of manufacture of the product to emphasise particular features and the quality of making.

Centres are reminded that marks allocated to making should reflect the overall complexity of the product, the level of skill demonstrated by the candidate, and the quality of the making of the final product.

7. **Testing and Evaluation**

Most centres assessed this section accurately, some were too lenient.

Most candidates tested their products against their original specification. Many went on to identify strengths and weaknesses. To improve on their responses further, candidates needed to use sketches and notes to suggest proposals for further development. To access more marks, candidates also needed to test the product for its intended use and make more detailed comment about the quality of manufacture or performance against the specification.

Photographic evidence of testing should be included in this section. Many candidates had clients/users identified who were able to test and evaluate the final product.