READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 16.
Electronic calculators may be used.
1 The diagram shows a cup of hot tea.

Which row describes the water particles in the air above the cup compared with the water particles in the cup?

<table>
<thead>
<tr>
<th></th>
<th>moving faster</th>
<th>closer together</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>

2 A student is asked to measure the time taken for 0.4 g of magnesium carbonate to react completely with 25.0 cm³ of dilute hydrochloric acid.

Which pieces of apparatus does the student need?

A balance, stop-clock, pipette
B balance, stop-clock, thermometer
C balance, pipette, thermometer
D stop-clock, pipette, thermometer

3 Petroleum is a mixture.

Which method is used to separate petroleum?

A chromatography
B cracking
C filtration
D fractional distillation
Magnesium hydroxide can be obtained from sea water as shown.

Which process is used in the separation stage to separate solid magnesium hydroxide from the mixture?

A crystallisation
B filtration
C distillation
D chromatography

What is the total number of electrons in one molecule of ammonia, NH₃?

A 6
B 8
C 10
D 11

An isotope of lithium has the symbol $^7_{\text{Li}}$.

What is the arrangement of electrons in one atom of this isotope of lithium?

Which statement about an alloy is correct?

A It is a compound made of two or more elements, one of which is a metal.
B It is a layer of a metal plated onto another metal.
C It is a mixture of a metal with other elements.
D It is a single element.
8 Graphite is a form of carbon.

Why can graphite be used as a lubricant?
A Graphite contains unbonded electrons which move through the structure.
B Graphite contains weak covalent bonds so the atoms move easily.
C Graphite has a low melting point so it easily turns into a liquid.
D Graphite has weak attractive forces between layers so they can move.

9 Magnesium burns in oxygen to form magnesium oxide.

The equation for the reaction is shown.

\[2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO} \]

Which mass of magnesium oxide is formed when 48 g of magnesium is burned?
A 20 g
B 40 g
C 80 g
D 160 g

10 The apparatus used for electrolysis is shown.

Which statement is correct?
A Copper forms at the anode in some electrolysis reactions.
B Hydrogen forms at the cathode in some electrolysis reactions.
C Oxygen forms at the cathode in some electrolysis reactions.
D The negative electrode is called the anode.
11 The temperature of the water in two beakers, X and Y, is measured as 21.5 °C.

5 g of sodium chloride is dissolved in the water in beaker X. The temperature changes to 18.0 °C.

5 g of calcium oxide is dissolved in the water in beaker Y. The temperature changes to 29.4 °C.

Which types of process are occurring in beakers X and Y?

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>endothermic</td>
<td>endothermic</td>
</tr>
<tr>
<td>B</td>
<td>endothermic</td>
<td>exothermic</td>
</tr>
<tr>
<td>C</td>
<td>exothermic</td>
<td>endothermic</td>
</tr>
<tr>
<td>D</td>
<td>exothermic</td>
<td>exothermic</td>
</tr>
</tbody>
</table>

12 Which reaction produces a white-coloured substance?

A adding water to anhydrous cobalt(II) chloride
B adding water to anhydrous copper(II) sulfate
C heating hydrated cobalt(II) chloride
D heating hydrated copper(II) sulfate

13 Four students collect the gas produced from the reaction of calcium carbonate with dilute hydrochloric acid. Each student records the time taken to collect a volume of gas.

Which results show the highest average rate of reaction?

A 15 cm³ of gas collected in 20 seconds
B 50 cm³ of gas collected in 40 seconds
C 75 cm³ of gas collected in 80 seconds
D 90 cm³ of gas collected in 100 seconds

14 Which row identifies a chemical and a physical change?

<table>
<thead>
<tr>
<th>chemical change</th>
<th>physical change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A boiling ethanol</td>
<td>burning ethanol</td>
</tr>
<tr>
<td>B burning ethanol</td>
<td>evaporating ethanol</td>
</tr>
<tr>
<td>C dissolving ethanol in water</td>
<td>burning ethanol</td>
</tr>
<tr>
<td>D evaporating ethanol</td>
<td>dissolving ethanol in water</td>
</tr>
</tbody>
</table>
15 When magnesium is heated with zinc oxide a reaction occurs.

The equation is shown.

\[
\text{Mg} + \text{ZnO} \rightarrow \text{MgO} + \text{Zn}
\]

Which substance is oxidised?
A magnesium
B magnesium oxide
C zinc
D zinc oxide

16 Which statement describes the properties of hydrochloric acid?
A Carbon dioxide is produced when limestone reacts with hydrochloric acid.
B Hydrogen is produced when sodium hydroxide reacts with hydrochloric acid.
C Methyl orange turns yellow in strong hydrochloric acid.
D Red litmus paper turns blue when dipped into hydrochloric acid.

17 A sample of X is heated with aqueous sodium hydroxide and small pieces of aluminium.

A gas is produced which turns red litmus paper blue.

Aqueous sodium hydroxide solution is added to a second sample of X. A pale green precipitate is observed.

What is X?
A ammonium nitrate
B chromium(II) chloride
C iron(II) nitrate
D iron(II) sulfate

18 Which element forms an acidic oxide?
A calcium
B lithium
C magnesium
D sulfur
19 A method used to make copper(II) sulfate crystals is shown.

1 Place dilute sulfuric acid in a beaker.
2 Warm the acid.
3 Add copper(II) oxide until it is in excess.
4 Filter the mixture.
5 Evaporate the filtrate until crystals start to form.
6 Leave the filtrate to cool.

What are the purposes of step 3 and step 4?

<table>
<thead>
<tr>
<th></th>
<th>step 3</th>
<th>step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>to ensure all of the acid has reacted</td>
<td>to obtain solid copper(II) sulfate</td>
</tr>
<tr>
<td>B</td>
<td>to ensure all of the acid has reacted</td>
<td>to remove the excess of copper(II) oxide</td>
</tr>
<tr>
<td>C</td>
<td>to speed up the reaction</td>
<td>to obtain solid copper(II) sulfate</td>
</tr>
<tr>
<td>D</td>
<td>to speed up the reaction</td>
<td>to remove the excess of copper(II) oxide</td>
</tr>
</tbody>
</table>

20 Which statements describe changes that occur from left to right across a period of the Periodic Table?

1 The atomic number of the elements increases.
2 The metallic character of the elements decreases.
3 The physical state of the elements changes from gas to solid.

A 2 only B 1 and 2 only C 1 and 3 only D 2 and 3 only

21 Which pair of elements reacts together most violently?

A chlorine and lithium
B chlorine and potassium
C iodine and lithium
D iodine and potassium

22 Which is a typical property of transition elements?

A can act as catalysts
B poor electrical conductivity
C low melting point
D low density
23 Helium is a noble gas.

Which statement about helium is correct?

A It has eight electrons in its outer shell.
B It is a diatomic gas.
C It is reactive.
D It is used for filling balloons.

24 Some properties of substance X are listed.

- It conducts electricity when molten.
- It has a high melting point.
- It burns in oxygen and the oxide dissolves in water to give a solution with pH 11.

What is X?

A a covalent compound
B a macromolecule
C a metal
D an ionic compound
25 Four unknown metals, Q, R, S and T, are reacted with water, steam and dilute hydrochloric acid.

The results are shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>reaction with water</th>
<th>reaction with steam</th>
<th>reaction with dilute hydrochloric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>slow reaction</td>
<td>fast reaction</td>
<td>fast reaction</td>
</tr>
<tr>
<td>R</td>
<td>no reaction</td>
<td>no reaction</td>
<td>no reaction</td>
</tr>
<tr>
<td>S</td>
<td>no reaction</td>
<td>very slow reaction</td>
<td>slow reaction</td>
</tr>
<tr>
<td>T</td>
<td>fast reaction</td>
<td>explodes</td>
<td>explodes</td>
</tr>
</tbody>
</table>

Which statements are correct?

1. R is the least reactive metal.
2. T could be potassium.
3. S is more reactive than Q and R.
4. Metals react faster with steam than they do with water.

A 1, 2 and 4 only
B 1 and 2 only
C 2 and 3 only
D 3 and 4 only

26 What is added to molten iron to make steel?

A small amounts of carbon
B limestone and coke
C calcium oxide and oxygen
D hematite and air

27 Which row describes the uses of aluminium, copper and mild steel?

<table>
<thead>
<tr>
<th></th>
<th>aluminium</th>
<th>copper</th>
<th>mild steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>aircraft bodies</td>
<td>electrical wiring</td>
<td>car bodies</td>
</tr>
<tr>
<td>B</td>
<td>car bodies</td>
<td>cooking utensils</td>
<td>electrical wiring</td>
</tr>
<tr>
<td>C</td>
<td>electrical wiring</td>
<td>aircraft bodies</td>
<td>food containers</td>
</tr>
<tr>
<td>D</td>
<td>food containers</td>
<td>aircraft bodies</td>
<td>cooking utensils</td>
</tr>
</tbody>
</table>
28 River water contains soluble impurities, insoluble impurities and bacteria.

River water is made safe to drink by filtration and chlorination.

Which statement is correct?

A Filtration removes bacteria and insoluble impurities, and chlorination removes soluble impurities.

B Filtration removes insoluble impurities, and chlorination kills the bacteria.

C Filtration removes soluble and insoluble impurities, and chlorination kills the bacteria.

D Filtration removes soluble impurities and bacteria, and chlorination removes insoluble impurities.

29 Clean, dry air contains nitrogen, oxygen and small amounts of other gases. The noble gases have been left out of the table.

Which row shows the composition of clean, dry air?

<table>
<thead>
<tr>
<th></th>
<th>nitrogen /%</th>
<th>oxygen /%</th>
<th>other gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21</td>
<td>78</td>
<td>small amount of carbon dioxide</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>78</td>
<td>small amount of carbon monoxide</td>
</tr>
<tr>
<td>C</td>
<td>78</td>
<td>21</td>
<td>small amount of carbon dioxide</td>
</tr>
<tr>
<td>D</td>
<td>78</td>
<td>21</td>
<td>small amount of carbon monoxide</td>
</tr>
</tbody>
</table>
30 The apparatus shown is set up and left for a week.

Which diagram shows the level of the water at the end of the week?

A
B
C
D

Farmers add calcium oxide (lime) and ammonium salts to their fields.

The compounds are not added at the same time because they react with each other.

Which gas is produced in this reaction?

A ammonia
B carbon dioxide
C hydrogen
D nitrogen

32 Which information about carbon dioxide and methane is correct?

<table>
<thead>
<tr>
<th></th>
<th>carbon dioxide</th>
<th>methane</th>
<th>key</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>formed when vegetation decomposes</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>greenhouse gas</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>present in unpolluted air</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D</td>
<td>produced during respiration</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>
33 Which statement about the uses of sulfur dioxide is not correct?
 A It is used as a bleach in the manufacture of paper.
 B It is used as a food preservative.
 C It is used in the manufacture of cement.
 D It is used in the manufacture of sulfuric acid.

34 Which statement about limestone and lime is correct?
 A Limestone combines with water to produce slaked lime.
 B Lime is obtained from limestone by oxidation.
 C Lime is used in the desulfurisation of flue gases.
 D Lime is used in the treatment of alkaline soil.

35 Some fractions obtained from petroleum are listed.

<table>
<thead>
<tr>
<th>fraction</th>
<th>use</th>
<th>position collected in the fractionating column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gasoline</td>
<td>waxes and polishes</td>
<td>below refinery gas</td>
</tr>
<tr>
<td>2 bitumen</td>
<td>making roads</td>
<td>above kerosene</td>
</tr>
<tr>
<td>3 kerosene</td>
<td>jet fuel</td>
<td>below gasoline</td>
</tr>
<tr>
<td>4 refinery gas</td>
<td>heating and cooking</td>
<td>above gasoline</td>
</tr>
</tbody>
</table>

Which rows are correct?
 A 1, 3 and 4
 B 2, 3 and 4
 C 3 and 4 only
 D 4 only
36 The structures of three compounds are shown.

Which statement explains why these three compounds have similar chemical properties?
A They all contain bromine, carbon and hydrogen.
B They all contain the same functional group.
C They are all carbon-based molecules.
D They are all saturated molecules.

37 Which statement about ethane is correct?
A It rapidly decolourises aqueous bromine.
B It does not burn.
C It forms long-chain compounds called polymers.
D It only contains single bonds between its atoms.

38 Which products are obtained by the cracking of an alkane?

<table>
<thead>
<tr>
<th></th>
<th>alkene</th>
<th>hydrogen</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

39 Which statement about an aqueous solution of ethanoic acid is correct?
A It reacts with magnesium to form water as one of the products.
B It reacts with sodium carbonate to form carbon dioxide.
C It reacts with sodium hydroxide to form hydrogen.
D It turns red litmus paper blue.
The diagram shows the structure of a monomer and of the polymer made from it.

What are the monomer and polymer?

<table>
<thead>
<tr>
<th></th>
<th>monomer</th>
<th>polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ethane</td>
<td>poly(ethane)</td>
</tr>
<tr>
<td>B</td>
<td>ethane</td>
<td>poly(ethene)</td>
</tr>
<tr>
<td>C</td>
<td>ethene</td>
<td>poly(ethane)</td>
</tr>
<tr>
<td>D</td>
<td>ethene</td>
<td>poly(ethene)</td>
</tr>
</tbody>
</table>
The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).