Cambridge IGCSE™

CAMBRIDGE INTERNATIONAL MATHEMATICS 0607/63
Paper 6 Investigation and Modelling (Extended)
October/November 2020
1 hour 40 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS
- Answer both part A (Questions 1 to 4) and part B (Questions 5 to 8).
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly, including sketches, to gain full marks for correct methods.
- In this paper you will be awarded marks for providing full reasons, examples and steps in your working to communicate your mathematics clearly and precisely.

INFORMATION
- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.
Answer both parts A and B.

A INVESTIGATION (QUESTIONS 1 TO 4)

AREAS OF POLYGONS INSIDE AND OUTSIDE A CIRCLE (30 marks)

You are advised to spend no more than 50 minutes on this part.

This investigation looks at the areas of polygons drawn inside and outside a circle of radius 10 cm.

An inscribed polygon is a polygon in which all the vertices lie on a circle.
This is an inscribed square.

A circumscribed polygon is a polygon in which each side is a tangent to a circle.
This is a circumscribed square.

You may find some of these formulas useful.

Area, \(A \), of circle, radius \(r \) \[A = \pi r^2 \]

Area, \(A \), of triangle, base \(b \), height \(h \) \[A = \frac{1}{2} bh \]

In a right-angled triangle,

\[\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} \]

\[\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \]

\[\tan \theta = \frac{\text{opposite}}{\text{adjacent}} \]
A square circumscribes a circle, centre O, radius 10 cm.

Work out the area of the square.
A square is inscribed in a circle, centre O, radius 10 cm.

Work out the area of the square.

\[\text{Area of square} \]

\[\text{Area of circle} \]

\[\text{Area of circumscribed square} \]

Use this statement to complete the inequality below.

\[\text{Area of inscribed square} < \text{Area of circle} < \text{Area of circumscribed square} \]

\[\text{.................} \}

\[\pi \}

\[\text{.................} \]
A regular hexagon is inscribed in a circle, centre O, radius 10 cm.

Find the area of the hexagon.

... [3]
(b) (i) An equilateral triangle has height 10 cm.
Find the area of the triangle.

... [3]

(ii) A regular hexagon circumscribes a circle, centre O, radius 10 cm.
Using your answer to part (i), find the area of the hexagon.

... [2]
(c)

(i) Use Question 1(c), Question 2(a) and Question 2(b)(ii) to complete the inequality.

\[\ldots \ldots < \pi < \ldots \ldots \] \[1\]

(ii) Give a geometric reason why the range in the inequality in Question 2(c)(i) is smaller than the range in the inequality in Question 1(d).

... \[1\]
A regular 12-sided polygon is inscribed in a circle, centre O, radius 10 cm.

Find the area of this polygon.

\[
\text{Area of the polygon} \quad \boxed{} \quad [2]
\]
A regular 12-sided polygon circumscribes a circle, centre O, radius 10 cm.

Find the area of this polygon.

(c) Use the answers to part (a) and part (b) to complete the inequality.

$\ldots < \pi < \ldots$ [1]
4 (a) (i) Show that a formula for the area, $A \text{cm}^2$, of a regular polygon with n sides **inscribed** in a circle, radius 10 cm, is

$$A = 50n \sin\left(\frac{360}{n}\right)^\circ.$$

(ii) Show that a formula for the area, $B \text{cm}^2$, of a regular polygon with n sides that **circumscribes** a circle, radius 10 cm, is

$$B = 100n \tan\left(\frac{180}{n}\right)^\circ.$$

[2]
(b) (i) Work out the area of a regular polygon with 100 sides that is **inscribed** in a circle, radius 10 cm. Give your answer correct to 4 significant figures.

... [2]

(ii) Work out the area of a regular polygon with 100 sides that **circumscribes** a circle, radius 10 cm. Give your answer correct to 4 significant figures.

... [2]

(c) Use your answers to **part (b)** to explain how you can find the value of \(\pi \) correct to 3 significant figures.

..

... [1]
B MODELLING (QUESTIONS 5 TO 8)

MODELLING CONTAINERS (30 marks)

You are advised to spend no more than 50 minutes on this part.

Olivia wants to design a closed container with a volume of 1000 cm3 and minimum surface area.

5 Olivia uses a square-based cuboid to model the container.

(a) (i) Write down a formula for the volume of the cuboid, V cm3, in terms of x and h.

... [1]

(ii) Find a formula for the surface area, S cm2, of the cuboid, in terms of x and h. Give your answer in its simplest form.

... [2]

(b) (i) $V = 1000$.

Write h in terms of x.

... [1]

(ii) Show that $S = 2x^2 + \frac{4000}{x}$.

[1]
(iii) Work out the value of \(S \) when \(x = 25 \).

... [1]

(c) Sketch the graph of \(S = 2x^2 + \frac{4000}{x} \) for \(0 < x \leq 25 \).

(d) (i) Find the minimum surface area of the cuboid.

... [1]

(ii) Describe the container that gives the minimum surface area for Olivia’s model.
Volume, V, of a cylinder of radius r, height h
\[V = \pi r^2 h \]
Curved surface area, A, of a cylinder of radius r, height h
\[A = 2\pi rh \]

Olivia now uses a cylinder to model the container.

The total surface area of this model is $T\text{ cm}^2$.

(a) $V = 1000$.

Show that
\[T = 2\pi r^2 + \frac{2000}{r} \]

(b) (i) Find the minimum surface area of the cylinder.
(ii) Find the dimensions of the cylinder with the minimum surface area.

\[r = \ldots \] \hspace{1cm} \[h = \ldots \] \hspace{1cm} [2]
Volume, \(V \), of a pyramid, base area \(A \), height \(h \) \[V = \frac{1}{3}Ah \]

Olivia now uses a square-based pyramid to model the container.

The pyramid, \(OABCD \), has a square base of side \(x \) cm and height \(h \) cm. The vertex of the pyramid, \(O \), is directly above the centre of the square base. \(E \) is the mid-point of \(BC \).

(a) Find an expression for \(OE \) in terms of \(h \) and \(x \).
(b) The total surface area of this model is $P \text{ cm}^2$.

$V = 1000$.

Show that $P = x^2 + \sqrt{x^6 + 36000000}$.

(c) (i) Find the minimum surface area of the pyramid.

... [2]

(ii) Find the dimensions of the pyramid with the minimum surface area.

\[x = \text{.................................} \]

\[h = \text{.................................} \] [2]
8 Olivia recommends the container with the smallest surface area to a company.

Give a geometric reason why the company might not accept Olivia’s recommendation.

Olivia recommends the ..

Geometric reason ..
... [1]