You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
● For \(\pi \), use either your calculator value or 3.142.

INFORMATION

● The total mark for this paper is 56.
● The number of marks for each question or part question is shown in brackets [].
1. Write the number six hundred and seven thousand five hundred and thirty-two in figures.

... [1]

2. From the list of numbers, write down

(a) a square number,

... [1]

(b) a multiple of 13,

... [1]

(c) a factor of 186,

... [1]

(d) the prime numbers.

... [2]

3. On the grid, draw a triangle that is congruent to triangle A.

... [1]
4 The stem-and-leaf diagram shows the journey time to school of some students.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: 1[3 represents 13 minutes

Find

(a) the number of students with a journey time of more than 35 minutes,

.. [1]

(b) the mode.

... min [1]

5 This is Arania’s method to divide 213 by $12\frac{1}{2}$ without using a calculator.

\[
\begin{align*}
213 \div 12\frac{1}{2} &= 426 \div 25 \\
&= 852 \div 50 \\
&= 1704 \div 100 \\
&= 17.04
\end{align*}
\]

Show how to use Arania’s method to work out $135 \div 12\frac{1}{2}$ without using a calculator.
6 Sammy records the favourite hot drink of some students. He draws a bar chart to show this information.

Write down two different reasons why his bar chart is incorrect.

1. ..
2. ...

7 Put one pair of brackets into each calculation to make it correct.

(a) \[6 \times 7 - 5 + 4 = 16 \]
(b) \[-2^2 + 24 \div 12 - 4 = 2 \]
8 At noon, the temperature is 4 °C.
At midnight, the temperature is −9 °C.

Work out the difference in temperature between noon and midnight.

... °C [1]

9 Thibault records the number of cars of each colour in a car park.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Black</th>
<th>White</th>
<th>Silver</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cars</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

(a) He draws a pie chart to show this information.

Calculate the sector angle for the red cars.

... [2]

(b) Two more white cars enter the car park and no cars leave the car park.

When these two white cars are included in the results, will the sector angle for the red cars change? Without doing any further calculations, give a reason for your decision.

................... because .. [1]
10 \[p = \left(\frac{2}{8} \right), \quad q = \left(\frac{-1}{4} \right) \]

Find

(a) \(p - q \).

(b) \(6p \).

11 Find the total surface area of a cuboid with length 8 cm, width 6 cm and height 3 cm.

.. cm\(^2\) [3]

12 (a) The total cost of \(n \) bags of flour is $d.

Write down an expression for the cost of one bag of flour.

$... \quad [1]

(b) A bag of rice costs $r and a bag of almonds costs $a.

Pedro buys \(x \) bags of rice and \(y \) bags of almonds.

Write down an expression for the change that Pedro receives from a $20 note.

$... \quad [2]
13 (a) Find the value of \(\sqrt{68 \times \sqrt{153}} \).

\[\text{...} \quad [1] \]

(b) Find the value of \(6789^{\frac{1}{7}} \).
Give your answer correct to 2 decimal places.

\[\text{...} \quad [2] \]

14 Write the ratio \(5 \times 10^{-1} : 2 : 3 \times 10^1 \) in its simplest form.

\[\text{...} \quad [2] \]

15 The \(n \)th term of a sequence is \(n^2 + 12 \).

(a) Find the first three terms of this sequence.

\[\text{..........................} , \text{..........................} , \text{..........................} \quad [2] \]

(b) Is 5196 a term in this sequence?
Give a reason for your decision.

\[\text{.......................... because ..} \quad [2] \]
16 \[33\frac{1}{3}\%\] \[\pi\] \[\frac{1}{13}\] \[343^{\frac{1}{2}}\] \[\sqrt{3}\] \[5.6 \times 10^{-7}\]

Two of the numbers in this list are irrational.

Put a ring around each of these irrational numbers. [1]

17 \[9^x \times 9^2 = 9^{12}\]

Find the value of \(x\).

\[x = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \] [1]

18 By writing each number in the calculation correct to 1 significant figure, find an estimate for the value of

\[\frac{27 - 2.3^2}{845.4 \times 0.048}\]

\[\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \] [2]
19 The length, \(l \) metres, of a piece of rope is 30.7 m, correct to 1 decimal place.

Complete this statement about the value of \(l \).

\[\ldots \ldots \ldots \leq l < \ldots \ldots \ldots \] [2]

20 (a) Simplify.

\[3(2a - b) - b \]

\[\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \] [2]

(b) Factorise.

\[x^2 - 8xy \]

\[\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \] [1]

21 Find the lowest common multiple (LCM) of 24 and 28.

\[\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \] [2]
The bearing of B from A is 059°.

Work out the bearing of A from B.

\[... \] \[2 \]

23 \textbf{Without using a calculator}, work out \(4\frac{1}{8} - 2\frac{5}{6} \).

You must show all your working and give your answer as a mixed number in its simplest form.

\[... \] \[3 \]
The diagram shows two right-angled triangles, ABD and BCD. $AD = 5\text{ m}$, $DC = 14\text{ m}$ and angle $BAD = 53^\circ$.

Calculate BC.

$BC = \ldots m$ [4]